Skip to main content

Measuring Mitochondrial Dysfunction Caused by Soluble α-Synuclein Oligomers

  • Protocol
  • First Online:
Book cover Alpha-Synuclein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1948))

Abstract

Accumulation of misfolded αSyn and mitochondrial dysfunction are central features of Parkinson’s disease. Growing evidence points to a relationship between these two phenomena as oligomeric α-synuclein (αSyn) can interact with mitochondria and impair their function. Standardization of methods to prepare αSyn oligomers and isolate functional mitochondria will facilitate efforts to expand upon early findings. Here we present detailed protocols for preparing soluble αSyn oligomers; for isolating functional mitochondria from mouse tissue; and for simultaneously measuring several aspects of mitochondrial physiology. These protocols will benefit future studies aimed at characterizing the mitotoxicity of αSyn species isolated from the brains of synucleinopathy patients as well as efforts to identify small molecules and genetic or environmental alterations that prevent αSyn-induced mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartels T, Choi JG, Selkoe DJ (2011) α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  CAS  Google Scholar 

  2. Westphal CH, Chandra SS (2013) Monomeric synucleins generate membrane curvature. J Biol Chem 288:1829–1840

    Article  CAS  Google Scholar 

  3. Luth ES, Bartels T, Dettmer U et al (2015) Purification of α-synuclein from human brain reveals an instability of endogenous multimers as the protein approaches purity. Biochemistry 54:279–292

    Article  CAS  Google Scholar 

  4. Gould N, Mor DE, Lightfoot R et al (2014) Evidence of native α-synuclein conformers in the human brain. J Biol Chem 289:7929–7934

    Article  CAS  Google Scholar 

  5. Wang L, Das U, Scott DA et al (2014) α-Synuclein multimers cluster synaptic vesicles and attenuate recycling. Curr Biol 24:2319–2326

    Article  CAS  Google Scholar 

  6. Iljina M, Tosatto L, Choi ML et al (2016) Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep 6:33928

    Article  CAS  Google Scholar 

  7. Chartier-Harlin M-C, Kachergus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet (London, England) 364:1167–1169

    Article  CAS  Google Scholar 

  8. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841–841

    Article  CAS  Google Scholar 

  9. Kara E, Lewis PA, Ling H et al (2013) α-Synuclein mutations cluster around a putative protein loop. Neurosci Lett 546:67–70

    Article  CAS  Google Scholar 

  10. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840

    Article  CAS  Google Scholar 

  11. Dettmer U, Newman AJ, Soldner F et al (2015) Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat Commun 6:7314

    Article  Google Scholar 

  12. Danzer KM, Haasen D, Karow AR et al (2007) Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27:9220–9232

    Article  CAS  Google Scholar 

  13. Winner B, Jappelli R, Maji SK et al (2011) In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A 108:4194–4199

    Article  CAS  Google Scholar 

  14. Karpinar DP, Balija MBG, Kügler S et al (2009) Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. EMBO J 28:3256–3268

    Article  CAS  Google Scholar 

  15. Volles MJ, Lansbury PT (2003) Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry 42:7871–7878

    Article  CAS  Google Scholar 

  16. Fusco G, Chen SW, Williamson PTF et al (2017) Structural basis of membrane disruption and cellular toxicity by α-synuclein oligomers. Science 358:1440–1443

    Article  CAS  Google Scholar 

  17. Schapira AH, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet (London, England) 1:1269

    Article  CAS  Google Scholar 

  18. Parker WD, Boyson SJ, Parks JK (1989) Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 26:719–723

    Article  Google Scholar 

  19. Keeney PM, Xie J, Capaldi RA et al (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  CAS  Google Scholar 

  20. Devi L, Raghavendran V, Prabhu BM et al (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283:9089–9100

    Article  CAS  Google Scholar 

  21. Martin LJ, Pan Y, Price AC et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50

    Article  CAS  Google Scholar 

  22. Stichel CC, Zhu X-R, Bader V et al (2007) Mono- and double-mutant mouse models of Parkinson’s disease display severe mitochondrial damage. Hum Mol Genet 16:2377–2393

    Article  CAS  Google Scholar 

  23. Hsu LJ, Sagara Y, Arroyo A et al (2000) Alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol 157:401–410

    Article  CAS  Google Scholar 

  24. Büttner S, Habernig L, Broeskamp F et al (2013) Endonuclease G mediates α-synuclein cytotoxicity during Parkinson’s disease. EMBO J 32:3041–3054

    Article  Google Scholar 

  25. Parihar MS, Parihar A, Fujita M et al (2009) Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol 41:2015–2024

    Article  CAS  Google Scholar 

  26. Shavali S, Brown-Borg HM, Ebadi M et al (2008) Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett 439:125–128

    Article  CAS  Google Scholar 

  27. Luth ES, Stavrovskaya IG, Bartels T et al (2014) Soluble, prefibrillar α-synuclein oligomers promote complex I-dependent, Ca2+-induced mitochondrial dysfunction. J Biol Chem 289:21490–21507

    Article  Google Scholar 

  28. Luk KC, Song C, O’Brien P et al (2009) Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci U S A 106:20051–20056

    Article  CAS  Google Scholar 

  29. Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71

    Article  CAS  Google Scholar 

  30. Luk KC, Kehm V, Carroll J et al (2012) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338:949–953

    Article  CAS  Google Scholar 

  31. Polinski NK, Volpicelli-Daley LA, Sortwell CE et al (2018) Best practices for generating and using alpha-Synuclein pre-formed fibrils to model Parkinson’s disease in rodents. J Parkinson’s Dis 68:1–20

    Google Scholar 

  32. Stavrovskaya IG, Baranov SV, Guo X et al (2010) Reactive gamma-ketoaldehydes formed via the isoprostane pathway disrupt mitochondrial respiration and calcium homeostasis. Free Radic Biol Med 49:567–579

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Luth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luth, E.S., Stavrovskaya, I.G. (2019). Measuring Mitochondrial Dysfunction Caused by Soluble α-Synuclein Oligomers. In: Bartels, T. (eds) Alpha-Synuclein. Methods in Molecular Biology, vol 1948. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9124-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9124-2_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9123-5

  • Online ISBN: 978-1-4939-9124-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics