Skip to main content

Quantification and Comparison of Signals Generated by Different FRET-Based cAMP Reporters

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1947))

Abstract

A variety of FRET-based biosensors are currently in use for real-time monitoring of dynamic changes of intracellular cAMP. Due to differences in sensor properties, unique features of the cell type under examination and diverse specifications of the imaging setups in different laboratories, data generated using these sensors may not be immediately comparable within the same study or across studies. To facilitate comparison, often FRET data are normalized and expressed as fractional change of the maximal FRET response at sensor saturation. However, this approach may lead to misinterpretation of the underlying cAMP change. In this chapter, we provide examples of the problems that may arise when using normalized FRET data and present a method based on the conversion of FRET ratio changes into actual cAMP concentrations that mitigates these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–57. https://doi.org/10.1002/andp.19484370105

    Article  Google Scholar 

  2. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846. https://doi.org/10.1146/annurev.bi.47.070178.004131

    Article  CAS  PubMed  Google Scholar 

  3. Adams SR, Harootunian AT, Buechler YJ et al (1991) Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349:694–697. https://doi.org/10.1038/349694a0

    Article  CAS  PubMed  Google Scholar 

  4. Zaccolo M, De Giorgi F, Cho CY et al (2000) A genetically encoded fluorescent indicator for cyclic AMP in living cells. Nat Cell Biol 2:25–29. https://doi.org/10.1038/71345

    Article  CAS  PubMed  Google Scholar 

  5. DiPilato LM, Cheng X, Zhang J (2004) Fluorescent indicators of cAMP and Epac activation reveal differential dynamics of cAMP signaling within discrete subcellular compartments. Proc Natl Acad Sci U S A 101(47):16513–16518. https://doi.org/10.1073/pnas.0405973101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nikolaev VO, Bünemann M, Hein L et al (2004) Novel single chain cAMP sensors for receptor-induced signal propagation. J Biol Chem 279:37215–37218. https://doi.org/10.1074/jbc.C400302200

    Article  CAS  PubMed  Google Scholar 

  7. Klarenbeek J, Goedhart J, van Batenburg A et al (2015) Fourth-generation epac-based FRET sensors for cAMP feature exceptional brightness, photostability and dynamic range: characterization of dedicated sensors for FLIM, for ratiometry and with high affinity. PLoS One 10(4):e0122513. https://doi.org/10.1371/journal.pone.0122513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Di Benedetto G, Zoccarato A, Lissandron V et al (2008) Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ Res 103(8):836–844. https://doi.org/10.1161/CIRKRESAHA.108.174813

    Article  PubMed  Google Scholar 

  9. Sprenger JU, Perera RK, Steinbrecher JH et al (2015) In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat Commun 6:6965. https://doi.org/10.1038/ncomms7965

    Article  CAS  PubMed  Google Scholar 

  10. Surdo NC, Berrera M, Koschinski A et al (2017) FRET biosensor uncovers cAMP nano-domains at β-adrenergic targets that dictate precise tuning of cardiac contractility. Nat Commun 8:15031. https://doi.org/10.1038/ncomms15031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikolaev VO, Bünemann M, Schmitteckert E et al (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching β1-adrenergic but locally confined β2-adrenergic receptor-mediated signaling. Circ Res 99:1084–1091. https://doi.org/10.1161/01.RES.0000250046.69918.d5

    Article  CAS  PubMed  Google Scholar 

  12. Herget S, Lohse MJ, Nikolaev VO (2008) Real-time monitoring of phosphodiesterase inhibition in intact cells. Cell Signal 20:1423–1431. https://doi.org/10.1016/j.cellsig.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  13. Halls ML, Cooper DMF (2010) Sub-picomolar relaxin signalling by a pre-assembled RXFP1, AKAP79, AC2, β-arrestin 2, PDE4D3 complex. EMBO J 29:2772–2787. https://doi.org/10.1038/emboj.2010.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Agarwal SR, Yang PC, Rice M et al (2014) Role of membrane microdomains in compartmentation of cAMP signaling. PLoS One 9(4):e95835. https://doi.org/10.1371/journal.pone.0095835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boerner S, Schwede F, Schlipp A et al (2011) FRET measurements of intracellular cAMP concentrations and cAMP analog permeability in intact cells. Nat Protoc 6:427–438. https://doi.org/10.1038/nprot.2010.198

    Article  CAS  Google Scholar 

  16. Koschinski A, Zaccolo M (2017) Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling. Sci Rep 7(1):14090. https://doi.org/10.1038/s41598-017-13021-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iancu RV, Ramamurthy G, Warrier S et al (2008) Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 295(2):C414–C422. https://doi.org/10.1152/ajpcell.00038.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wachten S, Masada N, Ayling LJ et al (2010) Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived. GH3B6 Cells 123(Pt 1):95–106. https://doi.org/10.1242/jcs.058594

    Article  CAS  Google Scholar 

  19. Koschinski A, Zaccolo M (2015) A novel approach combining real-time imaging and the patch-clamp technique to calibrate FRET-based reporters for cAMP in their cellular microenvironment. Methods Mol Biol 1294:25–40. https://doi.org/10.1007/978-1-4939-2537-7_3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the British Heart Foundation (PG/10/75/28537 and RG/17/6/32944) and the BHF Centre of Research Excellence, Oxford (RE/13/1/30181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Koschinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Koschinski, A., Zaccolo, M. (2019). Quantification and Comparison of Signals Generated by Different FRET-Based cAMP Reporters. In: Tiberi, M. (eds) G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, vol 1947. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9121-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9121-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9120-4

  • Online ISBN: 978-1-4939-9121-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics