Skip to main content

Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1937))

Abstract

Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. FDA guidance for industry: gene therapy clinical trials - observing subjects for delayed adverse events (2006)

    Google Scholar 

  2. Fenner F, Henderson D, Arita I et al (1988) Smallpox and its eradication. In: Smallpox and its eradication, vol 6. World Health Organization, Geneva

    Google Scholar 

  3. Stewart AJ, Devlin PM (2006) The history of the smallpox vaccine. J Infect 52(5):329–334. https://doi.org/10.1016/j.jinf.2005.07.021

    Article  PubMed  Google Scholar 

  4. La Scola B, Audic S, Robert C et al (2003) A giant virus in amoebae. Science 299(5615):2033. https://doi.org/10.1126/science.1081867

    Article  PubMed  Google Scholar 

  5. Smith GL, Moss B (1983) Infectious poxvirus vectors have capacity for at least 25,000 base-pairs of foreign DNA. Gene 25(1):21–28. https://doi.org/10.1016/0378-1119(83)90163-4

    Article  CAS  PubMed  Google Scholar 

  6. Evans DH, Stuart D, McFadden G (1988) High levels of genetic recombination among cotransfected plasmid DNAs in poxvirus-infected mammalian cells. J Virol 62(2):367–375

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schramm B, Locker JK (2005) Cytoplasmic organization of POXvirus DNA replication. Traffic 6(10):839–846. https://doi.org/10.1111/j.1600-0854.2005.00324.x

    Article  CAS  PubMed  Google Scholar 

  8. Yang Z, Martens CA, Bruno DP et al (2012) Pervasive initiation and 3′-end formation of poxvirus postreplicative RNAs. J Biol Chem 287(37):31050–31060. https://doi.org/10.1074/jbc.M112.390054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kotwal GJ, Abrahams M-R (2004) Growing poxviruses and determining virus titer. In: Vaccinia virus and poxvirology. Springer, Berlin, pp 101–112

    Chapter  Google Scholar 

  10. Smallwood SE, Rahman MM, Smith DW et al (2010) Myxoma virus: propagation, purification, quantification, and storage. Curr Protoc Microbiol Chapter 14:Unit 14A 11. https://doi.org/10.1002/9780471729259.mc14a01s17

    Article  Google Scholar 

  11. Chan WM, Rahman MM, McFadden G (2013) Oncolytic myxoma virus: the path to clinic. Vaccine 31(39):4252–4258. https://doi.org/10.1016/j.vaccine.2013.05.056

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bell J (2014) Oncolytic viruses: immune or cytolytic therapy? Mol Ther 22(7):1231–1232. https://doi.org/10.1038/mt.2014.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devaud C, John LB, Westwood JA et al (2013) Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2(8):e25961. https://doi.org/10.4161/onci.25961

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kirn DH, Thorne SH (2009) Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 9(1):64–71. https://doi.org/10.1038/nrc2545

    Article  CAS  PubMed  Google Scholar 

  15. Kirn DH, Wang Y, Le Boeuf F et al (2007) Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med 4(12):e353. https://doi.org/10.1371/journal.pmed.0040353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, O'Malley M, Urban J et al (2011) Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Mol Ther 19(4):650–657. https://doi.org/10.1038/mt.2010.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seubert CM, Stritzker J, Hess M et al (2011) Enhanced tumor therapy using vaccinia virus strain GLV-1h68 in combination with a beta-galactosidase-activatable prodrug seco-analog of duocarmycin SA. Cancer Gene Ther 18(1):42–52. https://doi.org/10.1038/cgt.2010.49

    Article  CAS  PubMed  Google Scholar 

  18. Zajac P, Oertli D, Marti W et al (2003) Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum Gene Ther 14(16):1497–1510. https://doi.org/10.1089/104303403322495016

    Article  CAS  PubMed  Google Scholar 

  19. Loya SM, Zhang X (2015) Enhancing the bystander killing effect of an oncolytic HSV by arming it with a secretable apoptosis activator. Gene Ther 22(3):237–246. https://doi.org/10.1038/gt.2014.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rojas JJ, Sampath P, Bonilla B et al (2016) Manipulating TLR signaling increases the anti-tumor T cell response induced by viral cancer therapies. Cell Rep 15(2):264–273. https://doi.org/10.1016/j.celrep.2016.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Conrad SJ, El-Aswad M, Kurban E et al (2015) Oncolytic tanapoxvirus expressing FliC causes regression of human colorectal cancer xenografts in nude mice. J Exp Clin Cancer Res 34(1):19. https://doi.org/10.1186/s13046-015-0131-z

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mansfield DC, Kyula JN, Rosenfelder N et al (2016) Oncolytic vaccinia virus as a vector for therapeutic sodium iodide symporter gene therapy in prostate cancer. Gene Ther 23(4):357–368. https://doi.org/10.1038/gt.2016.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Q, Yu YA, Wang E et al (2007) Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res 67(20):10038–10046. https://doi.org/10.1158/0008-5472.can-07-0146

    Article  CAS  PubMed  Google Scholar 

  24. Wennier ST, Liu J, Li S et al (2012) Myxoma virus sensitizes cancer cells to gemcitabine and is an effective oncolytic virotherapeutic in models of disseminated pancreatic cancer. Mol Ther 20(4):759–768. https://doi.org/10.1038/mt.2011.293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wennier ST, Liu J, McFadden G (2012) Bugs and drugs: oncolytic virotherapy in combination with chemotherapy. Curr Pharm Biotechnol 13(9):1817–1833

    Article  CAS  Google Scholar 

  26. Yu F, Wang X, Guo ZS et al (2014) T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 22(1):102–111. https://doi.org/10.1038/mt.2013.240

    Article  CAS  PubMed  Google Scholar 

  27. Nounamo B, Liem J, Cannon M et al (2017) Myxoma virus optimizes cisplatin for the treatment of ovarian cancer in vitro and in a syngeneic murine dissemination model. Mol Ther Oncolytics 6:90–99. https://doi.org/10.1016/j.omto.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilkinson MJ, Smith HG, McEntee G et al (2016) Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 7(49):81208–81222. https://doi.org/10.18632/oncotarget.12820

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cripe TP, Ngo MC, Geller JI et al (2015) Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther 23(3):602–608. https://doi.org/10.1038/mt.2014.243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park BH, Hwang T, Liu TC et al (2008) Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9(6):533–542

    Article  CAS  Google Scholar 

  31. Merrick AE, Ilett EJ, Melcher AA (2009) JX-594, a targeted oncolytic poxvirus for the treatment of cancer. Curr Opin Investig Drugs 10(12):1372–1382

    CAS  PubMed  Google Scholar 

  32. Gentschev I, Muller M, Adelfinger M et al (2011) Efficient colonization and therapy of human hepatocellular carcinoma (HCC) using the oncolytic vaccinia virus strain GLV-1h68. PLoS One 6(7):e22069. https://doi.org/10.1371/journal.pone.0022069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Wennier S, McFadden G (2010) The immunoregulatory properties of oncolytic myxoma virus and their implications in therapeutics. Microbes Infect 12(14–15):1144–1152. https://doi.org/10.1016/j.micinf.2010.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McFadden G (2015) The curious road from basic pathogen research to clinical translation. PLoS Pathog 11(6):e1004997. https://doi.org/10.1371/journal.ppat.1004997

    Article  PubMed  PubMed Central  Google Scholar 

  35. McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3(3):201–213. https://doi.org/10.1038/nrmicro1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lun XQ, Yang WQ, Alain T et al (2005) Myxoma virus is a novel oncolytic virus with significant antitumor activity against experimental human gliomas. Cancer Res 65(21):9982–9990. https://doi.org/10.1158/0008-5472.Can-05-1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stanford MM, Barrett JW, Nazarian SH et al (2007) Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells. J Virol 81(3):1251–1260. https://doi.org/10.1128/JVI.01408-06

    Article  CAS  PubMed  Google Scholar 

  38. Stanford MM, Shaban M, Barrett JW et al (2008) Myxoma virus oncolysis of primary and metastatic B16F10 mouse tumors in vivo. Mol Ther 16(1):52–59. https://doi.org/10.1038/sj.mt.6300348

    Article  CAS  PubMed  Google Scholar 

  39. Tosic V, Thomas DL, Kranz DM et al (2014) Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity. PLoS One 9(10):e109801. https://doi.org/10.1371/journal.pone.0109801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urbasic AS, Hynes S, Somrak A et al (2012) Oncolysis of canine tumor cells by myxoma virus lacking the serp2 gene. Am J Vet Res 73(8):1252–1261. https://doi.org/10.2460/ajvr.73.8.1252

    Article  CAS  PubMed  Google Scholar 

  41. MacNeill AL, Moldenhauer T, Doty R et al (2012) Myxoma virus induces apoptosis in cultured feline carcinoma cells. Res Vet Sci 93(2):1036–1038. https://doi.org/10.1016/j.rvsc.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  42. Lun XQ, Zhou H, Alain T et al (2007) Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67(18):8818–8827. https://doi.org/10.1158/0008-5472.Can-07-1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bartee MY, Dunlap KM, Bartee E (2016) Myxoma virus induces ligand independent extrinsic apoptosis in human myeloma cells. Clin Lymphoma Myeloma Leuk 16(4):203–212. https://doi.org/10.1016/j.clml.2015.12.005

    Article  PubMed  Google Scholar 

  44. Bartee E, Chan WM, Moreb JS et al (2012) Selective purging of human multiple myeloma cells from autologous stem cell transplantation grafts using oncolytic myxoma virus. Biol Blood Marrow Tr 18(10):1540–1551. https://doi.org/10.1016/j.bbmt.2012.04.004

    Article  Google Scholar 

  45. Lilly CL, Villa NY, Lemos de Matos A et al (2017) Ex vivo oncolytic virotherapy with myxoma virus arms multiple allogeneic bone marrow transplant leukocytes to enhance graft versus tumor. Mol Ther Oncolytics 4:31–40. https://doi.org/10.1016/j.omto.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  46. Gammon DB, Evans DH (2009) The 3′-to-5′ exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination. J Virol 83(9):4236–4250. https://doi.org/10.1128/JVI.02255-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shuman S (1991) Site-specific interaction of vaccinia virus topoisomerase I with duplex DNA. Minimal DNA substrate for strand cleavage in vitro. J Biol Chem 266(17):11372–11379

    CAS  PubMed  Google Scholar 

  48. Shuman S (1992) Two classes of DNA end-joining reactions catalyzed by vaccinia topoisomerase I. J Biol Chem 267(24):16755–16758

    CAS  PubMed  Google Scholar 

  49. Petersen BO, Shuman S (1997) DNA strand transfer reactions catalyzed by vaccinia topoisomerase: hydrolysis and glycerololysis of the covalent protein-DNA intermediate. Nucleic Acids Res 25(11):2091–2097

    Article  CAS  Google Scholar 

  50. Garcia AD, Otero J, Lebowitz J et al (2006) Quaternary structure and cleavage specificity of a poxvirus holliday junction resolvase. J Biol Chem 281(17):11618–11626. https://doi.org/10.1074/jbc.M600182200

    Article  CAS  PubMed  Google Scholar 

  51. Scheiflinger F, Dorner F, Falkner FG (1992) Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proc Natl Acad Sci U S A 89(21):9977–9981

    Article  CAS  Google Scholar 

  52. Panicali D, Paoletti E (1982) Construction of poxviruses as cloning vectors - insertion of the thymidine kinase gene from herpes-simplex virus into the DNA of infectious vaccinia virus. Proc Natl Acad Sci-Biol 79(16):4927–4931. https://doi.org/10.1073/pnas.79.16.4927

    Article  CAS  Google Scholar 

  53. Mackett M, Smith GL, Moss B (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci U S A 79(23):7415–7419

    Article  CAS  Google Scholar 

  54. Moss B (1996) Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proc Natl Acad Sci U S A 93(21):11341–11348

    Article  CAS  Google Scholar 

  55. Liu J, Wennier S, Reinhard M et al (2009) Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. J Virol 83(11):5933–5938. https://doi.org/10.1128/JVI.00204-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barrett JW, Shun Chang C, Wang G et al (2007) Myxoma virus M063R is a host range gene essential for virus replication in rabbit cells. Virology 361(1):123–132. https://doi.org/10.1016/j.virol.2006.11.015

    Article  CAS  PubMed  Google Scholar 

  57. Bratke KA, McLysaght A, Rothenburg S (2013) A survey of host range genes in poxvirus genomes. Infect Genet Evol 14:406–425. https://doi.org/10.1016/j.meegid.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  58. Barrett JW, Sypula J, Wang F et al (2007) M135R is a novel cell surface virulence factor of myxoma virus. J Virol 81(1):106–114. https://doi.org/10.1128/JVI.01633-06

    Article  CAS  PubMed  Google Scholar 

  59. Ogbomo H, Zemp FJ, Lun X et al (2013) Myxoma virus infection promotes NK lysis of malignant gliomas in vitro and in vivo. PLoS One 8(6):e66825. https://doi.org/10.1371/journal.pone.0066825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu J, McFadden G (2015) SAMD9 is an innate antiviral host factor with stress response properties that can be antagonized by poxviruses. J Virol 89(3):1925–1931. https://doi.org/10.1128/JVI.02262-14

    Article  CAS  PubMed  Google Scholar 

  61. Stewart L, Burgin AB (2005) Whole gene synthesis: a gene-O-matic future. Front Drug Des Discov 1(1):297–341. https://doi.org/10.2174/1574088054583318

    Article  CAS  Google Scholar 

  62. Eindhoven T (2015) The Cloning Guide.80

    Google Scholar 

  63. Katzen F (2007) Gateway((R)) recombinational cloning: a biological operating system. Expert Opin Drug Discov 2(4):571–589. https://doi.org/10.1517/17460441.2.4.571

    Article  CAS  PubMed  Google Scholar 

  64. Liang X, Peng L, Baek CH et al (2013) Single step BP/LR combined Gateway reactions. BioTechniques 55(5):265–268. https://doi.org/10.2144/000114101

    Article  CAS  PubMed  Google Scholar 

  65. Mohamed MR, Rahman MM, Lanchbury JS et al (2009) Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses. Proc Natl Acad Sci U S A 106(22):9045–9050. https://doi.org/10.1073/pnas.0900452106

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu J, Wennier S, Zhang L et al (2011) M062 is a host range factor essential for myxoma virus pathogenesis and functions as an antagonist of host SAMD9 in human cells. J Virol 85(7):3270–3282. https://doi.org/10.1128/JVI.02243-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smallwood SE, Rahman MM, Werden SJ et al (2011) Production of Myxoma virus gateway entry and expression libraries and validation of viral protein expression. Curr Protoc Microbiol Chapter 14:Unit 14A 12. https://doi.org/10.1002/9780471729259.mc14a02s21

    Article  Google Scholar 

  68. Broyles SS (2003) Vaccinia virus transcription. J Gen Virol 84(Pt 9):2293–2303. https://doi.org/10.1099/vir.0.18942-0

    Article  CAS  PubMed  Google Scholar 

  69. Yang Z, Maruri-Avidal L, Sisler J et al (2013) Cascade regulation of vaccinia virus gene expression is modulated by multistage promoters. Virology 447(1–2):213–220. https://doi.org/10.1016/j.virol.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  70. Keck JG, Baldick CJ, Moss B (1990) Role of DNA replication in vaccinia virus gene expression: a naked template is required for transcription of three late trans-activator genes. Cell 61(5):801–809

    Article  CAS  Google Scholar 

  71. Davison AJ, Moss B (1989) Structure of vaccinia virus early promoters. J Mol Biol 210(4):749–769

    Article  CAS  Google Scholar 

  72. Davison AJ, Moss B (1989) Structure of vaccinia virus late promoters. J Mol Biol 210(4):771–784

    Article  CAS  Google Scholar 

  73. Skinner MA, Laidlaw SM, Eldaghayes I et al (2005) Fowlpox virus as a recombinant vaccine vector for use in mammals and poultry. Expert Rev Vaccines 4(1):63–76. https://doi.org/10.1586/14760584.4.1.63

    Article  CAS  PubMed  Google Scholar 

  74. Chakrabarti S, Sisler JR, Moss B (1997) Compact, synthetic, vaccinia virus early/late promoter for protein expression. BioTechniques 23(6):1094–1097

    Article  CAS  Google Scholar 

  75. Sanchez-Sampedro L, Perdiguero B, Mejias-Perez E et al (2015) The evolution of poxvirus vaccines. Viruses 7(4):1726–1803. https://doi.org/10.3390/v7041726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cochran MA, Puckett C, Moss B (1985) In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and late regulatory signals. J Virol 54(1):30–37

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Thomas DL, Doty R, Tosic V et al (2011) Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 60(10):1461–1472. https://doi.org/10.1007/s00262-011-1045-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Weir JP, Moss B (1987) Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase. Virology 158(1):206–210. https://doi.org/10.1016/0042-6822(87)90254-6

    Article  CAS  PubMed  Google Scholar 

  79. Baldick CJ Jr, Moss B (1993) Characterization and temporal regulation of mRNAs encoded by vaccinia virus intermediate-stage genes. J Virol 67(6):3515–3527

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hagen CJ, Titong A, Sarnoski EA et al (2014) Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res 181:43–52. https://doi.org/10.1016/j.virusres.2013.12.033

    Article  CAS  PubMed  Google Scholar 

  81. Senkevich TG, Ward BM, Moss B (2004) Vaccinia virus A28L gene encodes an essential protein component of the virion membrane with intramolecular disulfide bonds formed by the viral cytoplasmic redox pathway. J Virol 78(5):2348–2356

    Article  CAS  Google Scholar 

  82. Hammond JM, Oke PG, Coupar BE (1997) A synthetic vaccinia virus promoter with enhanced early and late activity. J Virol Methods 66(1):135–138

    Article  CAS  Google Scholar 

  83. Rice AD, Gray SA, Li Y et al (2011) An efficient method for generating poxvirus recombinants in the absence of selection. Viruses 3(3):217–232. https://doi.org/10.3390/v3030217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yao XD, Evans DH (2003) High-frequency genetic recombination and reactivation of orthopoxviruses from DNA fragments transfected into leporipoxvirus-infected cells. J Virol 77(13):7281–7290. https://doi.org/10.1128/Jvi.77.13.7281-7290.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Di Lullo G, Soprana E, Panigada M et al (2010) The combination of marker gene swapping and fluorescence-activated cell sorting improves the efficiency of recombinant modified vaccinia virus Ankara vaccine production for human use. J Virol Methods 163(2):195–204. https://doi.org/10.1016/j.jviromet.2009.09.016

    Article  CAS  PubMed  Google Scholar 

  86. Franke CA, Rice CM, Strauss JH et al (1985) Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol Cell Biol 5(8):1918–1924. https://doi.org/10.1128/Mcb.5.8.1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou J, Crawford L, Sun XY et al (1991) The hygromycin-resistance-encoding gene as a selection marker for vaccinia virus recombinants. Gene 107(2):307–312

    Article  CAS  Google Scholar 

  88. Falkner FG, Moss B (1988) Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J Virol 62(6):1849–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Isaacs SN, Kotwal GJ, Moss B (1990) Reverse guanine phosphoribosyltransferase selection of recombinant vaccinia viruses. Virology 178(2):626–630

    Article  CAS  Google Scholar 

  90. Lorenzo MM, Blasco R (1998) PCR-based method for the introduction of mutations in genes cloned and expressed in vaccinia virus. BioTechniques 24(2):308–313

    Article  CAS  Google Scholar 

  91. Wong YC, Lin LCW, Melo-Silva CR et al (2011) Engineering recombinant poxviruses using a compact GFP-blasticidin resistance fusion gene for selection. J Virol Methods 171(1):295–298. https://doi.org/10.1016/j.jviromet.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  92. Guo ZS, Liu Z, Sathaiah M et al (2017) Rapid generation of multiple loci-engineered marker-free poxvirus and characterization of a clinical-grade oncolytic vaccinia virus. Mol Ther Methods Clin Dev 7:112–122. https://doi.org/10.1016/j.omtm.2017.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dambach MJ, Trecki J, Martin N et al (2006) Oncolytic viruses derived from the γ34. 5-deleted herpes simplex virus recombinant R3616 encode a truncated UL3 protein. Mol Ther 13(5):891–898

    Article  CAS  Google Scholar 

  94. Rintoul JL, Wang J, Gammon DB et al (2011) A selectable and excisable marker system for the rapid creation of recombinant poxviruses. PLoS One 6(9):e24643. https://doi.org/10.1371/journal.pone.0024643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grosenbach DW, Jordan R, Hruby DE (2011) Development of the small-molecule antiviral ST-246 as a smallpox therapeutic. Futur Virol 6(5):653–671. https://doi.org/10.2217/fvl.11.27

    Article  CAS  Google Scholar 

  96. Olson VA, Smith SK, Foster S et al (2014) In vitro efficacy of brincidofovir against variola virus. Antimicrob Agents Chemother 58(9):5570–5571. https://doi.org/10.1128/AAC.02814-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Trost LC, Rose ML, Khouri J et al (2015) The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: a model of smallpox disease. Antivir Res 117:115–121. https://doi.org/10.1016/j.antiviral.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  98. Guimaraes AP, de Souza FR, Oliveira AA et al (2015) Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur J Med Chem 91:72–90. https://doi.org/10.1016/j.ejmech.2014.09.099

    Article  CAS  PubMed  Google Scholar 

  99. Lederman ER, Davidson W, Groff HL et al (2012) Progressive vaccinia: case description and laboratory-guided therapy with vaccinia immune globulin, ST-246, and CMX001. J Infect Dis 206(9):1372–1385. https://doi.org/10.1093/infdis/jis510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vora S, Damon I, Fulginiti V et al (2008) Severe eczema vaccinatum in a household contact of a smallpox vaccinee. Clin Infect Dis 46(10):1555–1561. https://doi.org/10.1086/587668

    Article  PubMed  Google Scholar 

  101. Adelfinger M, Bessler S, Frentzen A et al (2015) Preclinical testing oncolytic vaccinia virus strain GLV-5b451 expressing an anti-VEGF single-chain antibody for canine cancer therapy. Viruses 7(7):4075–4092. https://doi.org/10.3390/v7072811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Patil SS, Gentschev I, Nolte I et al (2012) Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients. J Transl Med 10:3. https://doi.org/10.1186/1479-5876-10-3

    Article  PubMed  PubMed Central  Google Scholar 

  103. Paszkowski P, Noyce RS, Evans DH (2016) Live-cell imaging of vaccinia virus recombination. PLoS Pathog 12(8):e1005824. https://doi.org/10.1371/journal.ppat.1005824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Villa NY, Bartee E, Mohamed MR et al (2010) Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells. Virology 401(2):266–279. https://doi.org/10.1016/j.virol.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fang Q, Yang L, Zhu W et al (2005) Host range, growth property, and virulence of the smallpox vaccine: vaccinia virus Tian Tan strain. Virology 335(2):242–251. https://doi.org/10.1016/j.virol.2005.02.014

    Article  CAS  PubMed  Google Scholar 

  106. Henderson B (1996) In: Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Short protocols in molecular biology, 3rd edn. John Wiley and Sons, Chichester xxxii+ 700 pages,£ 6.00 (1995). Wiley Online Library

    Google Scholar 

  107. Liu J, Wennier S, Moussatche N et al (2012) Myxoma virus M064 is a novel member of the poxvirus C7L superfamily of host range factors that controls the kinetics of myxomatosis in European rabbits. J Virol 86(9):5371–5375. https://doi.org/10.1128/jvi.06933-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conrad, S.J., Liu, J. (2019). Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. In: Manfredsson, F., Benskey, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 1937. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9065-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9065-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9064-1

  • Online ISBN: 978-1-4939-9065-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics