Skip to main content

A Hidden Markov Random Field Model for Detecting Domain Organizations from Spatial Transcriptomic Data

  • Protocol
  • First Online:
Computational Methods for Single-Cell Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1935))

Abstract

Cells in complex tissues are organized by distinct microenvironments and anatomical structures. This spatial environment of cells is thought to be important for division of labor and other specialized functions of tissues. Recently developed spatial transcriptomic technologies enable the quantification of expression of hundreds of genes while accounting for cells’ spatial coordinates, providing an opportunity to study spatially organized structures. Here, we describe a computational pipeline for detecting the spatial organization of cells based on a hidden Markov random field model. We illustrate this pipeline with data generated from multiplexed smFISH from the adult mouse visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196. https://doi.org/10.1126/science.1245316

    Article  CAS  PubMed  Google Scholar 

  2. Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343:776–779. https://doi.org/10.1126/science.1247651.Massively

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Macosko EZ, Basu A, Regev A et al (2015) Highly parallel genome-wide expression profiling of individual cells using Nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schiffenbauer YS, Kalma Y, Trubniykov E et al (2011) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  Google Scholar 

  5. Halpern KB, Shenhav R, Matcovitch-Natan O et al (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:1–5. https://doi.org/10.1038/nature21065

    Article  CAS  Google Scholar 

  6. Lein ES, Hawrylycz MJ, Ao N et al (2006) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176. https://doi.org/10.1038/nature05453

    Article  CAS  PubMed  Google Scholar 

  7. Raj A, van den Bogaard P, Rifkin SA et al (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879. https://doi.org/10.1038/nmeth.1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lubeck E, Cai L (2012) Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods 9:743–748. https://doi.org/10.1038/nmeth.2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen KH, Boettiger AN, Moffitt JR et al (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348. https://doi.org/10.1126/science.aaa6090

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moffitt JR, Hao J, Bambah-Mukku D et al (2016) High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc Natl Acad Sci 113:14456–14461. https://doi.org/10.1073/pnas.1617699113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shah S, Lubeck E, Zhou W, Cai L (2016) In situ transcription profiling of single cells reveals spatial organization of cells in the mouse Hippocampus. Neuron 92:342–357. https://doi.org/10.1016/j.neuron.2016.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu Q, Shah S, Dries R et al (2018) Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat Biotechnol. https://doi.org/10.1038/nbt.4260

    Article  CAS  Google Scholar 

  13. Ståhl PL, Salmén F, Vickovic S et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  CAS  PubMed  Google Scholar 

  14. Wang Q (2012) HMRF-EM-image: implementation of the hidden markov random field model and its expectation-maximization algorithm. arXiv Prepr

    Google Scholar 

  15. Li SZ (2009) Markov random field modeling in image analysis

    Google Scholar 

  16. Li SZ (2003) Modeling image analysis problems using Markov random fields. Stoch Process Model Simul 473

    Google Scholar 

  17. Obayashi T, Kinoshita K (2011) COXPRESdb: a database to compare gene coexpression in seven model animals. Nucleic Acids Res 39:D1016–D1022

    Article  CAS  PubMed  Google Scholar 

  18. Tasic B, Menon V, Nguyen TN et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346. https://doi.org/10.1038/nn.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung NC, Storey JD (2015) Statistical significance of variables driving systematic variation in high-dimensional data. Bioinformatics 31:545–554. https://doi.org/10.1093/bioinformatics/btu674

    Article  CAS  PubMed  Google Scholar 

  20. Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM 22:251–256. https://doi.org/10.1145/359094.359101

    Article  Google Scholar 

  21. Finak G, McDavid A, Yajima M et al (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16:278. https://doi.org/10.1186/s13059-015-0844-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhu, Q. (2019). A Hidden Markov Random Field Model for Detecting Domain Organizations from Spatial Transcriptomic Data. In: Yuan, GC. (eds) Computational Methods for Single-Cell Data Analysis. Methods in Molecular Biology, vol 1935. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9057-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9057-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9056-6

  • Online ISBN: 978-1-4939-9057-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics