Skip to main content

Determination of In Vivo Interactomes of Dot/Icm Type IV Secretion System Effectors by Tandem Affinity Purification

  • Protocol
  • First Online:
Legionella

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1921))

Abstract

The Dot/Icm type IV secretion system (T4SS) is essential for the pathogenesis of Legionella species and translocates a multitude of effector proteins into host cells. The identification of host cell targets of these effectors is often critical to unravel their roles in controlling the host. Here we describe a method to characterize the protein complexes associated with effectors in infected host cells. To achieve this, Legionella expressing an effector of interest fused to a Bio-tag, a combination of hexahistidine tags and a specific recognition sequence for the biotin ligase BirA, are used to infect host cells expressing BirA, which leads to biotinylation of the translocated effector. Following chemical cross-linking, effector interactomes are isolated by tandem affinity purification employing metal affinity and NeutrAvidin resins and identified by western blotting or mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu W, Banga S, Tan Y et al (2011) Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila. PLoS One 6:e17638. https://doi.org/10.1371/journal.pone.0017638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kubori T, Hyakutake A, Nagai H (2008) Legionella translocates an E3 ubiquitin ligase that has multiple U-boxes with distinct functions. Mol Microbiol 67:1307–1319. https://doi.org/10.1111/j.1365-2958.2008.06124.x

    Article  CAS  PubMed  Google Scholar 

  3. Luo Z-Q, Isberg RR (2004) Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci U S A 101:841–846. https://doi.org/10.1073/pnas.0304916101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang L, Boyd D, Amyot WM et al (2011) The E Block motif is associated with Legionella pneumophila translocated substrates. Cell Microbiol 13:227–245. https://doi.org/10.1111/j.1462-5822.2010.01531.x

    Article  CAS  PubMed  Google Scholar 

  5. Lifshitz Z, Burstein D, Peeri M et al (2013) Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci 110:E707–E715. https://doi.org/10.1073/pnas.1215278110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burstein D, Zusman T, Degtyar E et al (2009) Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 5. https://doi.org/10.1371/journal.ppat.1000508

    Article  PubMed  PubMed Central  Google Scholar 

  7. De Felipe KS, Pampou S, Jovanovic OS et al (2005) Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J Bacteriol 187:7716–7726. https://doi.org/10.1128/JB.187.22.7716-7726.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Felipe KS, Glover RT, Charpentier X et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117. https://doi.org/10.1371/journal.ppat.1000117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagai H, Kagan JC, Zhu X et al (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295(80):679. https://doi.org/10.1126/science.1067025

    Article  CAS  PubMed  Google Scholar 

  10. Finsel I, Hilbi H (2015) Formation of a pathogen vacuole according to Legionella pneumophila : how to kill one bird with many stones. Cell Microbiol 17:935–950. https://doi.org/10.1111/cmi.12450

    Article  CAS  PubMed  Google Scholar 

  11. Horwitz MA (1983) Formation of a novel phagosome by the Legionnaires’ disease bacterium (Legionella pneumophila) in human monocytes. J Exp Med 158:1319–1331. https://doi.org/10.1084/jem.158.4.1319

    Article  CAS  PubMed  Google Scholar 

  12. Escoll P, Rolando M, Gomez-Valero L, Buchrieser C (2013) From amoeba to macrophages: exploring the molecular mechanisms of Legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol 376:1–34. https://doi.org/10.1007/82-2013-351

    Article  PubMed  Google Scholar 

  13. So EC, Mattheis C, Tate EW et al (2015) Creating a customized intracellular niche: subversion of host cell signaling by Legionella type IV secretion system effectors. Can J Microbiol 635:617–635. https://doi.org/10.1139/cjm-2015-0166

    Article  CAS  Google Scholar 

  14. Qiu J, Luo ZQ (2017) Legionella and Coxiella effectors: strength in diversity and activity. Nat Rev Microbiol 15:591–605. https://doi.org/10.1038/nrmicro.2017.67

    Article  CAS  PubMed  Google Scholar 

  15. Cazalet C, Rusniok C, Brüggemann H et al (2004) Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet 36:1165–1173. https://doi.org/10.1038/ng1447

    Article  CAS  PubMed  Google Scholar 

  16. Chien M, Morozova I, Shi S et al (2004) The genomic sequence of the accidental pathogen Legionella pneumophila. Science 305:1966–1968. https://doi.org/10.1126/science.1099776

    Article  CAS  PubMed  Google Scholar 

  17. Harding CR, Mattheis C, Mousnier AA et al (2013) LtpD is a novel Legionella pneumophila effector that binds phosphatidylinositol 3-phosphate and inositol monophosphatase IMPA1. Infect Immun 81:4261–4270. https://doi.org/10.1128/IAI.01054_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lomma M, Dervins-Ravault D, Rolando M et al (2010) The Legionella pneumophila F-box protein Lpp2082 (AnkB) modulates ubiquitination of the host protein parvin B and promotes intracellular replication. Cell Microbiol 12:1272–1291. https://doi.org/10.1111/j.1462-5822.2010.01467.x

    Article  CAS  PubMed  Google Scholar 

  19. Machner MP, Isberg RR (2006) Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev Cell 11:47–56. https://doi.org/10.1016/j.devcel.2006.05.013

    Article  CAS  PubMed  Google Scholar 

  20. Price CT, Al-Khodor S, Al-Quadan T et al (2009) Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 5. https://doi.org/10.1371/journal.ppat.1000704

    Article  PubMed  PubMed Central  Google Scholar 

  21. Urbanus ML, Quaile AT, Stogios PJ et al (2016) Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 12:893. https://doi.org/10.15252/msb.20167381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mousnier A, Schroeder GN, Stoneham CA et al (2014) A new method to determine in vivo interactomes reveals binding of the Legionella pneumophila effector PieE to multiple Rab GTPases. MBio 5:e01148. https://doi.org/10.1128/mBio.01148-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. So EC, Schroeder GN, Carson D et al (2016) The Rab-binding profiles of bacterial virulence factors during infection. J Biol Chem 291:5832–5843. https://doi.org/10.1074/jbc.M115.700930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tagwerker C (2006) A tandem affinity tag for two-step purification under fully denaturing conditions: application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol Cell Proteomics 5:737–748. https://doi.org/10.1074/mcp.M500368-MCP200

    Article  CAS  PubMed  Google Scholar 

  25. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  26. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494. https://doi.org/10.1038/nprot.2009.21

    Article  CAS  PubMed  Google Scholar 

  27. Thompson A, Schäfer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904. https://doi.org/10.1021/ac0262560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research and manuscript were enabled by Wellcome Trust and Medical Research Council UK grants (MR/L018225/1) for GF, AM, ECS, GNS, as well as additional institutional funding for GNS from Queen’s University Belfast and MRF/Asthma UK Research Grant (MRFAUK-2015-311) funding for AM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar N. Schroeder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

So, E.C., Mousnier, A., Frankel, G., Schroeder, G.N. (2019). Determination of In Vivo Interactomes of Dot/Icm Type IV Secretion System Effectors by Tandem Affinity Purification. In: Buchrieser, C., Hilbi, H. (eds) Legionella. Methods in Molecular Biology, vol 1921. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9048-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9048-1_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9047-4

  • Online ISBN: 978-1-4939-9048-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics