Skip to main content

LC-MS Analysis of (Glyco-)Proteins of Pichia pastoris

  • Protocol
  • First Online:
Recombinant Protein Production in Yeast

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1923))

Abstract

In this chapter, we will present two methods for comprehensive glycoprotein characterization that are particularly but not exclusively useful for Pichia pastoris glycoproteins. One approach is intact protein mass measurement, where deglycosylation may be used to determine the mass of the unmodified protein. The other method is the classical bottom-up approach, where peptides and glycopeptides are analyzed by reversed-phase chromatography and detected by electrospray ionization mass spectrometry. The choice of chromatography solvents with a high ionic strength simplifies the identification of peaks of a particular peptide’s glycopattern as it leads to co-elution of neutral and charged, i.e., phosphorylated, glycoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gasser B, Prielhofer R, Marx H et al (2013) Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8:191–208

    Article  CAS  Google Scholar 

  2. Wiśniewski JR, Zougman A, Nagaraj N et al (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362

    Article  Google Scholar 

  3. Botelho D, Wall MJ, Vieira DB et al (2010) Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J Proteome Res 9:2863–2870

    Article  CAS  Google Scholar 

  4. Grünwald-Gruber C, Thader A, Maresch D et al (2017) Determination of true ratios of different N-glycan structures in electrospray ionization mass spectrometry. Anal Bioanal Chem 409(10):2519–2530

    Article  Google Scholar 

  5. Huhn C, Selman MH, Ruhaak LR et al (2009) IgG glycosylation analysis. Proteomics 9:882–913

    Article  CAS  Google Scholar 

  6. Zauner G, Selman MH, Bondt A et al (2013) Glycoproteomic analysis of antibodies. Mol Cell Proteomics 12:856–865

    Article  CAS  Google Scholar 

  7. Pabst M, Altmann F (2011) Glycan analysis by modern instrumental methods. Proteomics 11:631–643

    Article  CAS  Google Scholar 

  8. Pabst M, Chang M, Stadlmann J et al (2012) Glycan profiles of the 27 N-glycosylation sites of the HIV envelope protein CN54gp140. Biol Chem 393:719–730

    Article  CAS  Google Scholar 

  9. Alagesan K, Khilji SK, Kolarich D et al (2017) It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 2:529–538

    Article  Google Scholar 

  10. Hinneburg H, Hofmann J, Struwe WB et al (2016) Distinguishing N-acetylneuraminic acid linkage isomers on glycopeptides by ion mobility-mass spectrometry. Chem Commun (Camb) 52:4381–4384

    Article  CAS  Google Scholar 

  11. Rußmayer H, Buchetics M, Gruber C et al (2015) Systems-level organization of yeast methylotrophic lifestyle. BMC Biol 13:80

    Article  Google Scholar 

  12. Scott NE, Parker BL, Connolly AM et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10:M000031-MCP000201

    Article  Google Scholar 

  13. Irungu J, Go EP, Zhang Y et al (2008) Comparison of HPLC/ESI-FTICR MS versus MALDI-TOF/TOF MS for glycopeptide analysis of a highly glycosylated HIV envelope glycoprotein. J Am Soc Mass Spectrom 19:1209–1220

    Article  CAS  Google Scholar 

  14. Jez J, Castilho A, Grass J et al (2013) Expression of functionally active sialylated human erythropoietin in plants. Biotechnol J 8:371–382

    Article  CAS  Google Scholar 

  15. Wu SW, Pu TH, Viner R et al (2014) Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem 86:5478–5486

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Altmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grünwald-Gruber, C., Altmann, F. (2019). LC-MS Analysis of (Glyco-)Proteins of Pichia pastoris . In: Gasser, B., Mattanovich, D. (eds) Recombinant Protein Production in Yeast. Methods in Molecular Biology, vol 1923. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9024-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9024-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9023-8

  • Online ISBN: 978-1-4939-9024-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics