Skip to main content

Long-Term Culture of Nephron Progenitor Cells Ex Vivo

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1926))

Abstract

Nephrons differentiate from the cap mesenchyme of the fetal kidney. Nephron progenitor cells that populate the cap mesenchyme efficiently balance self-renewal and epithelial differentiation to enable repeated rounds of nephron formation during development. Here we describe a method to isolate and propagate these cells from the embryonic mouse kidney. Using this method, nephron progenitor cells from a single litter of mice can be propagated to hundreds of millions of cells that express appropriate markers of the undifferentiated state and retain epithelial differentiation capacity in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, McMahon AP (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3(2):169–181. https://doi.org/10.1016/j.stem.2008.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, Baldwin HS, de Caestecker M (2008) Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313(1):234–245. https://doi.org/10.1016/j.ydbio.2007.10.014

    Article  CAS  PubMed  Google Scholar 

  3. Blank U, Brown A, Adams DC, Karolak MJ, Oxburgh L (2009) BMP7 promotes proliferation of nephron progenitor cells via a JNK-dependent mechanism. Development 136(21):3557–3566. https://doi.org/10.1242/dev.036335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown AC, Adams D, de Caestecker M, Yang X, Friesel R, Oxburgh L (2011) FGF/EGF signaling regulates the renewal of early nephron progenitors during embryonic development. Development 138(23):5099–5112. https://doi.org/10.1242/dev.065995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, Oxburgh L (2013) Role for compartmentalization in nephron progenitor differentiation. Proc Natl Acad Sci U S A 110(12):4640–4645. https://doi.org/10.1073/pnas.1213971110

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brown AC, Muthukrishnan SD, Oxburgh L (2015) A synthetic niche for nephron progenitor cells. Dev Cell 34(2):229–241. https://doi.org/10.1016/j.devcel.2015.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown AC, Blank U, Adams DC, Karolak MJ, Fetting JL, Hill BL, Oxburgh L (2011) Isolation and culture of cells from the nephrogenic zone of the embryonic mouse kidney. J Vis Exp 50. https://doi.org/10.3791/2555

  8. Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3(5):768–776. https://doi.org/10.1038/nprot.2008.42

    Article  CAS  PubMed  Google Scholar 

  9. Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, Little MH (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16(1):118–126. https://doi.org/10.1038/ncb2894

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research reported in this publication is supported by the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases under awards R01DK078161 (L.O.) and R24DK106743 (L.O.). Core facilities support was provided by the Maine Medical Center Research Institute core facilities for Molecular Phenotyping and Progenitor Cell Analysis [supported by the National Institute of General Medical Sciences (NIGMS) 5P30 GM106391]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif Oxburgh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brown, A.C., Gupta, A.K., Oxburgh, L. (2019). Long-Term Culture of Nephron Progenitor Cells Ex Vivo. In: Vainio, S. (eds) Kidney Organogenesis. Methods in Molecular Biology, vol 1926. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9021-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9021-4_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9020-7

  • Online ISBN: 978-1-4939-9021-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics