Skip to main content

Analysis of Transcriptional Regulation in Bone Cells

  • Protocol
  • First Online:
Book cover Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

  • 3242 Accesses

Abstract

Transcription is a process by which the rate of RNA synthesis is regulated. Here we describe the techniques for carrying out promoter-reporter assays, electrophoretic mobility shift assays, chromosome conformation capture (3C) assays, chromatin immunoprecipitation assays, and CRISPR-Cas9 assay, five commonly used methods for studying and altering gene transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strachan T, Read AP (2011) Human molecular genetics. Garland Science, New York

    Google Scholar 

  2. Sati S, Cavalli G (2017) Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma 126:33–44

    Article  Google Scholar 

  3. Das PM, Ramachandran K, vanWert J, Singal R (2004) Chromatin immunoprecipitation assay. BioTechniques 37:961–969

    Article  CAS  Google Scholar 

  4. Banerjee B, Sherwood RI (2017) A CRISPR view of gene regulation. Curr Opin Syst Biol 1:1–8

    Article  Google Scholar 

  5. Mann V, Hobson EE, Li B, Stewart TL, Grant SF, Robins SP, Aspden RM, Ralston SH (2001) A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 107:899–907

    Article  CAS  Google Scholar 

  6. Jin H, van't Hof RJ, Albagha OM, Ralston SH (2009) Promoter and intron 1 polymorphisms of COL1A1 interact to regulate transcription and susceptibility to osteoporosis. Hum Mol Genet 18:2729–2738

    Article  CAS  Google Scholar 

  7. Garcia-Giralt N, Enjuanes A, Bustamante M, Mellibovsky L, Nogues X, Carreras R, ez-Perez A, Grinberg D, Balcells S (2005) In vitro functional assay of alleles and haplotypes of two COL1A1-promoter SNPs. Bone 36:902–908

    Article  CAS  Google Scholar 

  8. Arai H, Miyamoto KI, Yoshida M, Yamamoto H, Taketani Y, Morita K, Kubota M, Yoshida S, Ikeda M, Watabe F, Kanemasa Y, Takeda E (2001) The polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J Bone Miner Res 16:1256–1264

    Article  CAS  Google Scholar 

  9. Chen X, Zhu D, Yang M, Hu W, Duan Y, Lu B, Rong Y, Dong S, Hao R, Chen J, Chen Y, Yao S, Thynn HN, Guo Y, Yang T (2018) An osteoporosis risk SNP at 1p36.12 acts as an allele-specific enhancer to modulate LINC00339 expression via long-range loop formation. Am J Hum Genet 102:776–793

    Article  CAS  Google Scholar 

  10. Zhu D, Chen X, Hu W, Dong S, Lu B, Rong Y, Chen Y, Chen H, Thynn HN, Wang N, Guo Y, Yang T (2018) Multiple functional variants at 13q14 risk locus for osteoporosis regulate RANKL expression through long-range super-enhancer. J Bone Miner Res. https://doi.org/10.1002/jbmr.3419 [Epub ahead of print]

    Article  CAS  Google Scholar 

  11. Xiao SM, Kung AW, Gao Y, Lau KS, Ma A, Zhang ZL, Liu JM, Xia W, He JW, Zhao L, Nie M, Fu WZ, Zhang MJ, Sun J, Kwan JSH, Tso GHW, Dai ZJ, Cheung CL, Bow CH, Leung AYHL, Tan KCB, Sham PC (2012) Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet 21:1648–1657

    Article  CAS  Google Scholar 

  12. Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grunhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparros-Martın JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schonau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574

    Article  CAS  Google Scholar 

  13. Hakim O, Misteli T (2012) SnapShot: chromosome conformation capture. Cell 148:1068–1068

    Article  CAS  Google Scholar 

  14. Didovyk A, Borek B, Tsimring L, Hasty J (2016) Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Curr Opin Biotechnol 40:177–184

    Article  CAS  Google Scholar 

  15. Naughton C, MacLeod K, Kuske B, Clarke R, Cameron DA, Langdon SP (2007) Progressive loss of estrogen receptor alpha cofactor recruitment in endocrine resistance. Mol Endocrinol 21:2615–2626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jin, H., Sophocleous, A., Azfer, A., Ralston, S.H. (2019). Analysis of Transcriptional Regulation in Bone Cells. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics