Skip to main content

Raman Microscopy and Bone

  • Protocol
  • First Online:
Bone Research Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

Raman microscopy is a nondestructive technique requiring minimal sample preparation that can be used to measure the chemical properties of the mineral and collagen parts of bone simultaneously. Modern Raman instruments contain the necessary components and software to acquire the standard information required in most bone studies. The spatial resolution of the technique is about a micron. As it is nondestructive and small samples can be used, it forms a useful part of a bone characterization toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banwell CN, McCash EM (1994) Fundamentals of molecular spectroscopy, 4th edn. McGraw-Hill, New York

    Google Scholar 

  2. Smith E (2005) Modern Raman spectroscopy: a practical approach. John Wiley, Chichester

    Google Scholar 

  3. Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17(6):1118–1126

    Article  Google Scholar 

  4. Callender AF, Finney WF, Morris MD, Sahar ND, Kohn DH, Kozloff KM et al (2005) Dynamic mechanical testing system for Raman microscopy of bone tissue specimens. Vib Spectrosc 38(1–2):101–105

    Article  CAS  Google Scholar 

  5. Notingher I, Jell G, Notingher PL, Bisson I, Tsigkou O, Polak JM et al (2005) Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. J Mol Struct 744:179–185

    Article  Google Scholar 

  6. Wang C, Wang Y, Huffman NT, Cui C, Yao X, Midura S et al (2009) Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition. J Biol Chem 284(11):7100–7113

    Article  CAS  Google Scholar 

  7. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36(5):893–901

    Article  CAS  Google Scholar 

  8. Goodyear SR, Gibson IR, Skakle JM, Wells RP, Aspden RM (2009) A comparison of cortical and trabecular bone from C57 black 6 mice using Raman spectroscopy. Bone 44:899–907

    Article  Google Scholar 

  9. Goodyear SR (2009) Physicochemical methods for measuring the properties of bone and their application to mouse models of disease. PhD Thesis, University of Aberdeen

    Google Scholar 

  10. Falgayrac G, Facq S, Leroy G, Cortet B, Penel G (2010) New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone. Appl Spectrosc 64(7):775–780

    Article  CAS  Google Scholar 

  11. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18(6):1012–1019

    Article  CAS  Google Scholar 

  12. Ager JW, Nalla RK, Breeden KL, Ritchie RO (2005) Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. J BiomedOpt 10(3):034012

    CAS  Google Scholar 

  13. Ramasamy JG, Akkus O (2007) Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. J Biomech 40(4):910–918

    Article  CAS  Google Scholar 

  14. Pezzotti G, Rondinella A, Marin E, Zhu W, Aldini NN, Ulian G et al (2017) Raman spectroscopic investigation on the molecular structure of apatite and collagen in osteoporotic cortical bone. J Mech Behav Biomed Mater 65:264–273

    Article  CAS  Google Scholar 

  15. Kerns JG, Buckley K, Gikas PD, Birch HL, McCarthy ID, Keen R et al (2015) Raman spectroscopy reveals evidence for early bone changes in osteoarthritis. Int J Exp Pathol 96(2). A3-A

    Google Scholar 

  16. Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I et al (2014) Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheumatol 66(5):1237–1246

    Article  Google Scholar 

  17. Unal M, Akkus O (2015) Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone. Bone 81:315–326

    Article  CAS  Google Scholar 

  18. de Carmejane O, Morris MD, Davis MK, Stixrude L, Tecklenburg M, Rajachar RM et al (2005) Bone chemical structure response to mechanical stress studied by high pressure Raman spectroscopy. Calcif Tissue Int 76(3):207–213

    Article  Google Scholar 

  19. Buckley K, Kerns JG, Birch HL, Gikas PD, Parker AW, Matousek P et al (2014) Functional adaptation of long bone extremities involves the localized "tuning" of the cortical bone composition; evidence from Raman spectroscopy. J Biomed Opt 19(11):111602

    Article  Google Scholar 

  20. Goodyear SR, Gibson IR, Skakle JMS, Wells RP, Aspden RM (2007) Cortical and trabecular bone from mice compared by Raman spectroscopy. J Bone Miner Res 22(7):1138 P48

    Google Scholar 

  21. Dehring KA, Crane NJ, Smukler AR, McHugh JB, Roessler BJ, Morris MD (2006) Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy. Appl Spectrosc 60(10):1134–1141

    Article  CAS  Google Scholar 

  22. Weber WH, Merlin R (2000) Raman scattering in materials science. Springer, Berlin, London

    Book  Google Scholar 

  23. Laserna JJ (1996) Modern techniques in Raman spectroscopy. Wiley, Chichester

    Google Scholar 

  24. Long DA (1977) Raman spectroscopy. McGraw-Hill, New York

    Google Scholar 

  25. Baranska H (1987) Laser Raman spectrometry:analytical applications. Chichester, Horwood

    Google Scholar 

  26. Tanaka M, Young RJ (2006) Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. J Mater Sci 41(3):963–991

    Article  CAS  Google Scholar 

  27. Feng G, Ochoa M, Maher JR, Awad HA, Berger AJ (2017) Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue. J Biophotonics 10(8):990–996

    Article  CAS  Google Scholar 

  28. Liao Z, Sinjab F, Nommeots-Nomm A, Jones J, Ruiz-Cantu L, Yang J et al (2017) Feasibility of spatially offset Raman spectroscopy for in vitro and in vivo monitoring mineralization of bone tissue engineering scaffolds. Anal Chem 89(1):847–853

    Article  CAS  Google Scholar 

  29. Kallepitis C, Bergholt MS, Mazo MM, Leonardo V, Skaalure SC, Maynard SA et al (2017) Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun 8:14843

    Article  CAS  Google Scholar 

  30. Yeni YN, Yerramshetty J, Akkus O, Pechey C, Les CM (2006) Effect of fixation and embedding on Raman spectroscopic analysis of bone tissue. Calcif Tissue Int 78(6):363–371

    Article  CAS  Google Scholar 

  31. Cai TT, Zhang DM, Ben-Amotz D (2001) Enhanced chemical classification of Raman images using multiresolution wavelet transformation. Appl Spectrosc 55(9):1124–1130

    Article  CAS  Google Scholar 

  32. Barclay VJ, Bonner RF, Hamilton IP (1997) Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression. Anal Chem 69(1):78–90

    Article  CAS  Google Scholar 

  33. Lieber CA, Mahadevan-Jansen A (2003) Automated method for subtraction of fluorescence from biological Raman spectra. Appl Spectrosc 57(11):1363–1367

    Article  CAS  Google Scholar 

  34. Timlin JA, Carden A, Morris MD (1999) Chemical microstructure of cortical bone probed by Raman transects. Appl Spectrosc 53(11):1429–1435

    Article  CAS  Google Scholar 

  35. Morris MD, Finney WF (2004) Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. Spectroscopy 18(2):155–159

    Article  CAS  Google Scholar 

  36. Carden A, Rajachar RM, Morris MD, Kohn DH (2003) Ultrastructural changes accompanying the mechanical deformation of bone tissue: a Raman imaging study. Calcif Tissue Int 72(2):166–175

    Article  CAS  Google Scholar 

  37. Kazanci M, Roschger P, Paschalis EP, Klaushofer K, Fratzl P (2006) Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol 156(3):489–496

    Article  CAS  Google Scholar 

  38. Awonusi A, Morris MD, Tecklenburg MM (2007) Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int 81(1):46–52

    Article  CAS  Google Scholar 

  39. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828

    Article  CAS  Google Scholar 

  40. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mat Sci Eng, C 25(2):131–143

    Article  Google Scholar 

  41. Freeman JJ, Wopenka B, Silva MJ, Pasteris JD (2001) Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment. Calcif Tissue Int 68(3):156–162

    Article  CAS  Google Scholar 

  42. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63(6):475–481

    Article  CAS  Google Scholar 

  43. Chatfield C, Colins AJ (1989) Principal component analysis. In: Introduction to multivariate analysis. Chapman and Hall, London

    Google Scholar 

  44. Hair JF (1998) Multivariate data analysis. Upper saddle river. Prentice-Hall, N.J

    Google Scholar 

  45. Kirchner MT, Edwards HGM, Lucy D, Pollard AM (1997) Ancient and modern specimens of human teeth: a Fourier transform Raman spectroscopic study. J Raman Spectrosc 28(2–3):171–178

    Article  CAS  Google Scholar 

  46. Gentleman E, Swain RJ, Evans ND, Boonrungsiman S, Jell G, Ball MD et al (2009) Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation. Nat Mater 8:763–770

    Article  CAS  Google Scholar 

  47. Chew W, Widjaja E, Garland M (2002) Band-target entropy minimization (BTEM): an advanced method for recovering unknown pure component spectra. Application to the FTIR spectra of unstable organometallic mixtures. Organometallics 21(9):1982–1990

    Article  CAS  Google Scholar 

  48. Makowski AJ, Pence IJ, Uppuganti S, Zein-Sabatto A, Huszagh MC, Mahadevan-Jansen A et al (2014) Polarization in Raman spectroscopy helps explain bone brittleness in genetic mouse models. J Biomed Opt 19(11):117008

    Article  Google Scholar 

  49. Raghavan M, Sahar ND, Wilson RH, Mycek MA, Pleshko N, Kohn DH et al (2010) Quantitative polarized Raman spectroscopy in highly turbid bone tissue. J Biomed Opt 15(3):037001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Aspden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goodyear, S.R., Aspden, R.M. (2019). Raman Microscopy and Bone. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_35

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics