Skip to main content

Scanning Electron Microscopy of Bone

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1914))

Abstract

This chapter describes methods for preparing samples of bone and bone cells for scanning electron microscopy (SEM). Backscattered electron (BSE) imaging is by far the most useful in the bone field, followed by secondary electrons (SE) and the energy dispersive X-ray (EDX) analytical modes. Samples may have 3D detail in a 3D surface, or be topography-free, polished or micromilled, resin-embedded block surfaces, or resin casts of space compartments surrounded by bone matrix. Methods for cells include fixation, drying, looking at undersides of bone cells, and metallic conductive coating. Maceration with alkaline bacterial pronase, hypochlorite, hydrogen peroxide, and sodium or potassium hydroxide to remove cells and unmineralized matrix is described in detail. Attention is given especially to methods for 3D BSE SEM imaging of bone samples. Recommendations are made for the types of resin embedding for BSE SEM imaging. Correlated confocal and SEM imaging of PMMA embedded bone requires the use of glycerol to coverslip. Cathodoluminescence (CL) mode SEM imaging is an alternative for visualizing fluorescent mineralizing front labels such as calcein and tetracyclines. Making spatial casts from PMMA or other resin-embedded samples is an important use of this material. Correlation with other imaging means, including microradiography and microtomography is important. Shipping wet bone samples between labs is best done in glycerol. Control of the vacuum pressure in the SEM sample chamber (now generally available) can be used to eliminate “charging” problems which were common, for example, with large, complex, cancellous bone samples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Boyde A, Shapiro IM (1980) Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochemistry 69:85–94

    Article  CAS  Google Scholar 

  2. Howell PGT, Boyde A (2003) Volumes from which calcium and phosphorus X-rays arise in electron probe emission microanalysis of bone: Monte Carlo simulation. Calcif Tissue Int 72:745–749

    Article  CAS  Google Scholar 

  3. Boyde A, Reid SA (1983a) Tetracycline cathodoluminescence in bone, dentine and enamel. Histochemistry 77:525–533

    Article  CAS  Google Scholar 

  4. Boyde A, Reid SA (1983b) Simple collectors for cathodoluminescence in the SEM made from aluminium foil. J Microsc 132:239–242

    Article  CAS  Google Scholar 

  5. Boyde A (2008) Low kV and video-rate, beam-tilt stereo for viewing live-time experiments in the SEM Chap. 7 pp. 197–214 and colour plates 4–11. In: Schatten H, Pawley JB (eds) Biological low voltage scanning electron microscopy. Springer, New York ISBN 978-0-387-72970-1

    Google Scholar 

  6. Boyde A, Riggs CM, Bushby AJ, McDermott B, Pinchbeck GL, Clegg PD (2011) Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone. Eur Cell Mater 21:470–478

    Article  CAS  Google Scholar 

  7. Boyde A (1984) Methodology of calcified tissue specimen preparation for scanning electron microscopy. In: Dickson GR (ed) Methods of calcified tissue preparation. Elsevier, Amsterdam, pp 251–307

    Google Scholar 

  8. Boyde A, Jones SJ (1996) Scanning electron microscopy of bone: instrument, specimen and issues. Microsc Res Tech 33:92–120

    Article  CAS  Google Scholar 

  9. Boyde A, Jones SJ (1983) Scanning electron microscopy of cartilage. In: Hall BK (ed) Cartilage I: 105–148. Academic Press, New York

    Google Scholar 

  10. Boyde A, Ali NN, Jones SJ (1984) Resorption of dentine by isolated osteoclasts in vitro. Brit Dent J 156:216–220

    Article  CAS  Google Scholar 

  11. Boyde A, Travers R, Glorieux FH, Jones SJ (1999) The mineralization density of iliac crest bone from children with osteogenesis imperfecta. Calcif Tissue Int 64:185–190

    Article  CAS  Google Scholar 

  12. Robards AW, Wilson AJ (eds) (1992) Protocols in electron microscopy. Wiley, Chichester [the whole book is a very valuable protocols resource]

    Google Scholar 

  13. Boyde A (2012) Staining plastic blocks with triiodide to image cells and soft tissues in backscattered electron SEM of skeletal and dental tissues. Eur Cell Mater 24:154–161

    Article  CAS  Google Scholar 

  14. Boyde A, Mccorkell FA, Taylor GK, Bomphrey RJ, Doube M (2014a) Iodine vapor staining for atomic number contrast in backscattered electron and X-ray imaging. Microsc Res Tech 77:1044–1051

    Article  CAS  Google Scholar 

  15. Boyde A, Davis GR, Mills D, Zikmund T, Cox TM, Adams VL, Niker A, Wilson PJ, Dillon JP, Ranganath LR, Jeffery N, Jarvis JC, Gallagher JA (2014b) On fragmenting, densely mineralised acellular protrusions into articular cartilage and their possible role in osteoarthritis. J Anat 225:436–446

    Article  CAS  Google Scholar 

  16. Ley CJ, Ekman S, Hansson K, Björnsdóttir S, Boyde A (2014) Osteochondral lesions in distal tarsal joints of Icelandic horses reveal strong associations between hyaline and calcified cartilage abnormalities. Eur Cell Mater 27:213–236

    Article  CAS  Google Scholar 

  17. Levanon D, Stein H (1999) Tannic acid and thiocarbohydrazide as structural reinforcement agents in the preparation of rabbit knee articular cartilage for the scanning electron microscope. Histochem J 31:71–73

    Article  CAS  Google Scholar 

  18. Boyde A (1975) A method for the preparation of cell surfaces hidden within bulk tissue for examination in the scanning electron microscope. In: Scanning electron microscopy. Illinois Inst Tec Res, Chicago, pp 295–304

    Google Scholar 

  19. Boyde A, Maconnachie E (1983) Not quite critical point drying. In: Revel JP, Barnard T, Haggis GH (eds) Science of biological specimen preparation. SEM Inc, AMF O’Hare, IL, pp 71–75

    Google Scholar 

  20. Boyde A, Bailey E, Jones SJ, Tamarin A (1977) Dimensional changes during specimen preparation for scanning electron microscopy. Scan Electron Microsc 1:507–518

    Google Scholar 

  21. Boyde A, Maconnachie E (1979) Volume changes during preparation of mouse embryonic tissue for scanning electron microscopy. Scanning 2:149–163

    Article  CAS  Google Scholar 

  22. Severs NJ (2007) Freeze-fracture electron microscopy. Nat Protoc 2:547–576

    Article  CAS  Google Scholar 

  23. Bassett JHD, Gogakos A, White JK, Evans H, Jacques RM, van der Spek AH, Project SMG, Ramirez-Solis R, Ryder E, Sunter D, Boyde A, Campbell MJ, Croucher PI, Williams GR (2012) Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength. PLoS Genet 8(8):e1002858

    Article  CAS  Google Scholar 

  24. Boyde A, Ali NN, Jones SJ (1985) Optical and scanning electron microscopy in the single osteoclast resorption assay. Scan Electron Microsc 3:1259–1271

    Google Scholar 

  25. Boyde A, Jones SJ (1991) Pitfalls in pit measurement. Calcif Tissue Int 49:65–70

    Article  CAS  Google Scholar 

  26. Boyde A (1973) Quantitative photogrammetric analysis and qualitative stereoscopic analysis of scanning electron microscope images. J Microsc 98:452–471

    Article  Google Scholar 

  27. Boyde A, Jones SJ (1995) Mapping and measuring surfaces using reflection confocal microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New York, pp 255–266

    Chapter  Google Scholar 

  28. Boyde A (2004) Improved depth of field in the scanning electron microscope derived from through focus image stacks. Scanning 26:265–269

    Article  Google Scholar 

  29. Boyde A (2003) Improved digital SEM of cancellous bone: scanning direction of detection, through focus for in-focus and sample orientation. J Anat 202:183–194

    Article  Google Scholar 

  30. Howell PGT, Davy KMW, Boyde A (1998) Mean atomic number and backscattered electron coefficient calculations for some materials with low mean atomic number. Scanning 20:35–40

    Article  CAS  Google Scholar 

  31. Ferguson VL, Bushby AJ, Boyde A (2003) Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J Anat 203:191–202

    Article  Google Scholar 

  32. Doube M, Firth EC, Boyde A (2005) Registration of confocal scanning laser microscopy and quantitative backscattered electron images for the temporospatial quantification of mineralization density in 18-month old thoroughbred racehorse articular calcified cartilage. Scanning 27:219–226

    Article  CAS  Google Scholar 

  33. Doube M, Firth EC, Boyde A (2007) Variations in articular calcified cartilage by site and exercise in the 18-month-old equine distal metacarpal condyle. OsteoArthritis & Cartilage 15:1283–1292

    Article  CAS  Google Scholar 

  34. Boyde A, Lovicar L, Zamecnik J (2005) Combining confocal and BSE SEM imaging for bone block surfaces. Eur Cell Mater 26:33–38

    Article  Google Scholar 

  35. Bembey AK, Oyen ML, Bushby AJ, Boyde A (2006) Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag 86(33–35 SPEC. ISSUE):5691–5703

    Article  CAS  Google Scholar 

  36. Oyen ML, Ferguson VL, Bembey AK, Bushby AJ, Boyde A (2008) Composite bounds on the elastic modulus of bone. J Biomech 41:2585–2588

    Article  Google Scholar 

  37. Boyde A, Koole LH (2001) Embed in an iodinated polymer: a new paradigm for histology via backscattered electron imaging. J Anat 199:217

    Article  Google Scholar 

  38. van Hooy-Corstjens CS, Bulstra SK, Knetsch ML, Geusens P, Kuijer R, Koole LH (2007) Biocompatibility of a new radiopaque iodine-containing acrylic bone cement. J Biomed Mater Res B Appl Biomater 80:339–344

    Article  Google Scholar 

  39. Bab I, Ashton BA, Owen ME, Boyde A (1984) Incident light microscopy of surfaces of plastic embedded hard tissues. J Microsc 134:49–53

    Article  CAS  Google Scholar 

  40. Boyde A, Staines KA, Javaheri B, Millan J-L, Pitsillides AA, Farquharson C (2017) A distinctive patchy osteomalacia characterises Phospho1-deficient mice. J Anat 231:298–308

    Article  CAS  Google Scholar 

  41. Bassett JHD, Logan JG, Boyde A, Cheung MS, Evans H, Croucher P, Sun XY, Xu S, Murata Y, Williams GR (2012) Mice lacking the calcineurin inhibitor Rcan2 have an isolated defect of osteoblast function. Endocrinology 153:3537–4358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Maureen Arora for her patient help in carrying out procedures described in this chapter on many thousands of samples and many colleagues who have helped to check this revision. Philippe Clezardin provided the sample shown in Fig. 8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Boyde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boyde, A. (2019). Scanning Electron Microscopy of Bone. In: Idris, A. (eds) Bone Research Protocols. Methods in Molecular Biology, vol 1914. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8997-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8997-3_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8996-6

  • Online ISBN: 978-1-4939-8997-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics