Skip to main content

A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing

  • Protocol
  • First Online:
Plant Genome Editing with CRISPR Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1917))

Abstract

The CRISPR-Cas9 system has become a powerful and popular tool for genome editing due to its efficiency and simplicity. Multiplex genome editing is an important feature of the CRISPR-Cas9 system and requires simultaneous expression of multiple guide RNAs (gRNAs). Here we describe a general method to efficiently produce many gRNAs from a single gene transcript based on the endogenous tRNA-processing system. A step-by-step protocol is provided for the design and construction of the polycistronic tRNA-gRNA (PTG) gene. The PTG method has been demonstrated to be highly efficient for multiplex genome editing in various plant, animal, and microbial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mali P et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  Google Scholar 

  5. Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17(1):5–15

    Article  CAS  PubMed  Google Scholar 

  6. Komor AC et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hu JH et al (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleinstiver BP et al (2016) High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529(7587):490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kleinstiver BP et al (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523(7561):481–485

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ma X et al (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  PubMed  Google Scholar 

  11. Xing HL et al (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:327

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nissim L et al (2014) Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol Cell 54(4):698–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56(4):343–349

    Article  CAS  PubMed  Google Scholar 

  14. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci U S A 112(11):3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cermak T et al (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29(6):1196–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu L et al (2017) Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res 45(5):e28

    PubMed  Google Scholar 

  17. Dong F et al (2017) Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun 482(4):889–895

    Article  CAS  PubMed  Google Scholar 

  18. Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13(10):852–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schwartz CM et al (2016) Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR-Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synth Biol 5(4):356–359

    Article  CAS  PubMed  Google Scholar 

  20. Ding D et al (2018) Engineering introns to express RNA guides for Cas9- and Cpf1-mediated multiplex genome editing. Mol Plant 11(4):542–552

    Article  CAS  PubMed  Google Scholar 

  21. Zhang D et al (2017) Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol 18(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7(5):923–926

    Article  CAS  PubMed  Google Scholar 

  23. Liu H et al (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10(3):530–532

    Article  CAS  PubMed  Google Scholar 

  24. Xie X et al (2017) CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant 10(9):1246–1249

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China to KX (31571374 and 31622047) and National Science Foundation Plant Genome Research Project Grant (1740874) to YY. This work was also supported by the USDA National Institute of Food and Agriculture Hatch project PEN04659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xie, K., Yang, Y. (2019). A Multiplexed CRISPR/Cas9 Editing System Based on the Endogenous tRNA Processing. In: Qi, Y. (eds) Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, vol 1917. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8991-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8991-1_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8990-4

  • Online ISBN: 978-1-4939-8991-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics