Skip to main content

Visual Assay for Gene Editing Using a CRISPR/Cas9 System in Carrot Cells

  • Protocol
  • First Online:
Book cover Plant Genome Editing with CRISPR Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1917))

Abstract

The development of the Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas9) system has advanced genome editing and has become widely adopted for this purpose in many species. Its efficient use requires the method adjustment and optimization. Here, we show the use of a model carrot callus system for demonstrating gene editing via CRISPR/Cas9 targeted mutagenesis. The system relies on the utilization of carrot tissue accumulating anthocyanin pigments responsible for a deep purple cell color and generation of knockout mutations in the flavanone-3-hydroxylase (F3H) gene in the anthocyanin biosynthesis pathway. F3H mutant cells targeted by Cas9/gRNA complexes are not able to synthesize anthocyanins and remain white, easily visually distinguished from purple wild-type cells. Mutations are either small indels or larger chromosomal deletions that can be identified by restriction fragment analysis and sequencing. This feasible system can also be applied for validating efficiency of CRISPR/Cas9 vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Transgenic Plant J 2:18–38

    Google Scholar 

  2. Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang J, Bowman M, Iovene M, Sanseverino W, Cavagnaro P, Yildiz M, Spooner DM, Simon PW et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  PubMed  Google Scholar 

  3. Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9 based genome editing in carrot cells. Plant Cell Rep 37:575–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersson M, Turesson H, Nicolia A, Fält AS, Samuelsson M, Hofvander P (2017) Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep 36:117–128

    Article  CAS  PubMed  Google Scholar 

  5. Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H (2017) Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula. Plant Cell Rep 36:371–374

    Article  CAS  PubMed  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zaidi SS, Tashkandi M, Mansoor S, Mahfouz MM (2016) Engineering plant immunity: using CRISPR/Cas9 to generate virus resistance. Front Plant Sci 7:1673

    Article  PubMed  PubMed Central  Google Scholar 

  10. Petrussa E, Braidot E, Zancani M, Peresson C, Bartolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  12. Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H et al (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41

    Article  CAS  Google Scholar 

  13. Gamborg OL, Miller RA, Ojima A (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Plant molecular biology manual, vol. A6, p. 1–10.

    Google Scholar 

  16. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre, Poland (UMO-2013/09/B/NZ9/02379) and by the Ministry of Science and Higher Education of the Republic of Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Klimek-Chodacka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Klimek-Chodacka, M., Oleszkiewicz, T., Baranski, R. (2019). Visual Assay for Gene Editing Using a CRISPR/Cas9 System in Carrot Cells. In: Qi, Y. (eds) Plant Genome Editing with CRISPR Systems. Methods in Molecular Biology, vol 1917. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8991-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8991-1_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8990-4

  • Online ISBN: 978-1-4939-8991-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics