Skip to main content

Identification of Calpain-Activated Protein Functions

  • Protocol
  • First Online:
Book cover Calpain

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1915))

Abstract

As opposed to proteasome-mediated proteolysis that leads to protein degradation, calpain proteases carry out limited proteolytic cleavages of their substrates. The cleavage of some substrates can produce active fragments that perform functions that are different from those performed by the full-length proteins. Therefore, cleavage by calpains can operate as a posttranslational modification and increase the functional diversity of target proteins. Nevertheless, activation of protein function by calpain cleavage is still an understudied area in molecular biology. Identifying and functionally characterizing by products generated by calpain cleavage could lead to the discovery of biomarkers and the identification of novel drug targets for the treatment of human diseases. This chapter contains a workflow designed to experimentally characterize novel calpain substrates, including identification of potential calpain targets via Western blotting, characterization of calpain cleavage sites, and the study of cellular functions played by such cleaved products. We will employ MYC as an example for these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83(3):731–801. https://doi.org/10.1152/physrev.00029.2002

    Article  CAS  PubMed  Google Scholar 

  2. Ono Y, Sorimachi H (2012) Calpains: an elaborate proteolytic system. Biochim Biophys Acta 1824(1):224–236. https://doi.org/10.1016/j.bbapap.2011.08.005

    Article  CAS  PubMed  Google Scholar 

  3. Xu W, Wong TP, Chery N, Gaertner T, Wang YT, Baudry M (2007) Calpain-mediated mGluR1alpha truncation: a key step in excitotoxicity. Neuron 53(3):399–412. https://doi.org/10.1016/j.neuron.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  4. Abe K, Takeichi M (2007) NMDA-receptor activation induces calpain-mediated beta-catenin cleavages for triggering gene expression. Neuron 53(3):387–397. https://doi.org/10.1016/j.neuron.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  5. Vennstrom B, Sheiness D, Zabielski J, Bishop JM (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42(3):773–779

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Conacci-Sorrell M, Ngouenet C, Eisenman RN (2010) Myc-nick: a cytoplasmic cleavage product of Myc that promotes alpha-tubulin acetylation and cell differentiation. Cell 142(3):480–493. https://doi.org/10.1016/j.cell.2010.06.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eisenman RN (2000) The max network: coordinated transcriptional regulation of cell growth and proliferation. Harvey Lect 96:1–32

    PubMed  Google Scholar 

  8. Conacci-Sorrell M, Ngouenet C, Anderson S, Brabletz T, Eisenman RN (2014) Stress-induced cleavage of Myc promotes cancer cell survival. Genes Dev 28(7):689–707. https://doi.org/10.1101/gad.231894.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anderson S, Poudel KR, Roh-Johnson M, Brabletz T, Yu M, Borenstein-Auerbach N, Grady WN, Bai J, Moens CB, Eisenman RN, Conacci-Sorrell M (2016) MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc Natl Acad Sci U S A 113(37):E5481–E5490. https://doi.org/10.1073/pnas.1610994113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Branca D (2004) Calpain-related diseases. Biochem Biophys Res Commun 322(4):1098–1104. https://doi.org/10.1016/j.bbrc.2004.07.126

    Article  CAS  PubMed  Google Scholar 

  11. Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26(2):163–175. https://doi.org/10.1038/79876

    Article  CAS  PubMed  Google Scholar 

  12. Ono Y, Saido TC, Sorimachi H (2016) Calpain research for drug discovery: challenges and potential. Nat Rev Drug Discov 15(12):854–876. https://doi.org/10.1038/nrd.2016.212

    Article  CAS  PubMed  Google Scholar 

  13. Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilagyi A, Banoczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279(20):20775–20785. https://doi.org/10.1074/jbc.M313873200

    Article  CAS  PubMed  Google Scholar 

  14. Lynch DR, Gleichman AJ (2007) Picking up the pieces: the roles of functional remnants of calpain-mediated proteolysis. Neuron 53(3):317–319. https://doi.org/10.1016/j.neuron.2007.01.014

    Article  CAS  PubMed  Google Scholar 

  15. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169(5):792–806. https://doi.org/10.1016/j.cell.2017.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8(10):397–403

    Article  CAS  PubMed  Google Scholar 

  17. Mumford RA, Pickett CB, Zimmerman M, Strauss AW (1981) Protease activities present in wheat germ and rabbit reticulocyte lysates. Biochem Biophys Res Commun 103(2):565–572

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maralice Conacci-Sorrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

del Carmen Lafita-Navarro, M., Conacci-Sorrell, M. (2019). Identification of Calpain-Activated Protein Functions. In: Messer, J. (eds) Calpain. Methods in Molecular Biology, vol 1915. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8988-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8988-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8987-4

  • Online ISBN: 978-1-4939-8988-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics