Skip to main content
Book cover

Calpain pp 121–147Cite as

CalCleaveMKL: a Tool for Calpain Cleavage Prediction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1915))

Abstract

Calpain, an intracellular Ca2+-dependent cysteine protease, is known to play a role in a wide range of metabolic pathways through limited proteolysis of its substrates. However, only a limited number of these substrates are currently known, with the exact mechanism of substrate recognition and cleavage by calpain still largely unknown.

Current sequencing technologies have made it possible to compile large amounts of cleavage data and brought greater understanding of the underlying protein interactions. However, the practical impossibility of exhaustively retrieving substrate sequences through experimentation alone has created the need for efficient computational prediction methods. Such methods must be able to quickly mark substrate candidates and putative cleavage sites for further analysis. While many methods exist for both calpain and other types of proteolytic actions, the expected reliability of these methods depends heavily on the type and complexity of proteolytic action, as well as the availability of well-labeled experimental datasets, which both vary greatly across enzyme families.

This chapter introduces CalCleaveMKL: a tool for calpain cleavage prediction based on multiple kernel learning, an extension to the classic support vector machine framework that is able to train complex models based on rich, heterogeneous feature sets, leading to significantly improved prediction quality. Along with its improved accuracy, the method used by CalCleaveMKL provided numerous insights on the respective importance of sequence-related features, such as solvent accessibility and secondary structure. It notably demonstrated there existed significant specificity differences across calpain subtypes, despite previous assumption to the contrary.

An online implementation of this prediction tool is available at http://calpain.org.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In: Machine Learning: ECML 2004, pp 39–50

    Chapter  Google Scholar 

  2. Backes C, Kuentzer J, Lenhof H, Comtesse N, Meese E (2005) Grabcas: a bioinformatics tool for score-based prediction of caspase-and granzyme b-cleavage sites in protein sequences. Nucleic Acids Res 33(Suppl 2):W208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banik N, Chou C, Deibler G, Krutzch H, Hogan E (1994) Peptide bond specificity of calpain: proteolysis of human myelin basic protein. J Neurosci Res 37(4):489–496

    Article  CAS  PubMed  Google Scholar 

  4. Barkan D, Hostetter D, Mahrus S, Pieper U, Wells J, Craik C, Sali A (2010) Prediction of protease substrates using sequence and structure features. Bioinformatics 26(14):1714–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrett A, Rawlings N, Woessner J (1998) Handbook of proteolytic enzymes. Academic, New York

    Google Scholar 

  6. Bartoli M, Richard I (2005) Calpains in muscle wasting. Int J Biochem Cell Biol 37(10):2115–2133

    Article  CAS  PubMed  Google Scholar 

  7. Bertipaglia L, Carafoli E (2007) Calpains and human disease. Subcell Biochem 45:29–53

    Article  CAS  PubMed  Google Scholar 

  8. Cai Y, Chou K (1998) Artificial neural network model for predicting HIV protease cleavage sites in protein. Adv Eng Softw 29(2):119–128

    Article  Google Scholar 

  9. Cai Y, Lin S, Chou K (2003) Support vector machines for prediction of protein signal sequences and their cleavage sites. Peptides 24(1):159–161

    Article  CAS  PubMed  Google Scholar 

  10. Carillo S, Pariat M, Steff A, Jariel-Encontre I, Poulat F, Berta P, Piechaczyk M (1996) PEST motifs are not required for rapid calpain-mediated proteolysis of c-fos protein. Biochem J 313(Pt 1):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chapelle O, Vapnik V, Bousquet O, Mukherjee S (2002) Choosing multiple parameters for support vector machines. Mach Learn 46(1):131–159

    Article  Google Scholar 

  12. Cheng J, Randall A, Sweredoski M, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33(Web Server Issue):W72

    Google Scholar 

  13. Chou K (1996) Review: prediction of HIV protease cleavage sites in proteins. Anal Biochem 233(1):1–14

    Article  CAS  PubMed  Google Scholar 

  14. Craik C, Largman C, Fletcher T, Roczniak S, Barr P, Fletterick R, Rutter W (1985) Redesigning trypsin: alteration of substrate specificity. Science 228(4697):291

    Article  CAS  PubMed  Google Scholar 

  15. Croall D, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 8(6):218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Croall D, Chacko S, Wang Z (1996) Cleavage of caldesmon and calponin by calpain: substrate recognition is not dependent on calmodulin binding domains. Biochim Biophys Acta Protein Struct Mol Enzymol 1298(2):276

    Article  CAS  Google Scholar 

  17. Cuerrier D, Moldoveanu T, Davies P (2005) Determination of peptide substrate specificity for μ-calpain by a peptide library-based approach. J Biol Chem 280(49):40632

    Article  CAS  PubMed  Google Scholar 

  18. Demon D, Van Damme P, Berghe T, Vandekerckhove J, Declercq W, Gevaert K, Vandenabeele P (2009) Caspase substrates: easily caught in deep waters? Trends Biotechnol 27:680–688

    Article  CAS  PubMed  Google Scholar 

  19. duVerle D, Takigawa I, Ono Y, Sorimachi H, Mamitsuka H (2010) Campdb: a resource for calpain and modulatory proteolysis. In: Genome informatics. International Conference on Genome Informatics, vol 22, p 202

    Google Scholar 

  20. duVerle D, Ono Y, Sorimachi H, Mamitsuka H (2011) Calpain cleavage prediction using multiple kernel learning. PLoS One 6(5):e19035. http://dx.doi.org/10.1371/journal.pone.0019035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. duVerle DA, Mamitsuka H (2011) A review of statistical methods for prediction of proteolytic cleavage. Brief Bioinform 13(3):337–349

    Article  PubMed  CAS  Google Scholar 

  22. Friedrich P, Bozóky Z (2005) Digestive versus regulatory proteases: on calpain action in vivo. Biol Chem 386(7):609

    Article  CAS  PubMed  Google Scholar 

  23. Goll D, Thompson V, Taylor R, Zalewska T (1992) Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? BioEssays 14(8):549–556

    Article  CAS  PubMed  Google Scholar 

  24. Goll D, Thompson V, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    Article  CAS  PubMed  Google Scholar 

  25. Hand D, Till R (2001) A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn 45(2):171–186

    Article  Google Scholar 

  26. Hanna R, Campbell R, Davies P (2008) Calcium-bound structure of calpain and its mechanism of inhibition by calpastatin. Nature 456(7220):409–412

    Article  CAS  PubMed  Google Scholar 

  27. Harris F, Biswas S, Singh J, Dennison S, Phoenix D (2006) Calpains and their multiple roles in diabetes mellitus. Ann N Y Acad Sci 1084:452

    Article  CAS  PubMed  Google Scholar 

  28. Horikawa Y, Oda N, Cox N, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner T, Mashima H, Schwarz P et al (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26(2):163–175

    Article  CAS  PubMed  Google Scholar 

  29. Jones D (1999) Protein secondary structure prediction based on position-specific scoring matrices1. J Mol Biol 292(2):195–202

    Article  CAS  PubMed  Google Scholar 

  30. Kawasaki H, Emori Y, Suzuki K (1993) Calpastatin has two distinct sites for interaction with calpain-effect of calpastatin fragments on the binding of calpain to membranes. Arch Biochem Biophys 305(2):467–472

    Article  CAS  PubMed  Google Scholar 

  31. Kelly J, Cuerrier D, Graham L, Campbell R, Davies P (2009) Profiling of calpain activity with a series of FRET-based substrates. Biochim Biophys Acta Proteins Proteomics 1794(10):1505–1509

    Article  CAS  Google Scholar 

  32. Kikuchi H, Imajoh-Ohmi S, Kanegasaki S (1993) Novel antibodies specific for proteolyzed forms of protein kinase C: production of anti-peptide antibodies available for in situ analysis of intracellular limited proteolysis. Biochim Biophys Acta Protein Struct Mol Enzymol 1162(1–2):171–176

    Article  CAS  Google Scholar 

  33. Kimura Y, Saya H, Nakao M (2000) Calpain-dependent proteolysis of NF2 protein: involvement in schwannomas and meningiomas. Neuropathology 20(3):153–160

    Article  CAS  PubMed  Google Scholar 

  34. Lanckriet G, De Bie T, Cristianini N, Jordan M, Noble W (2004) A statistical framework for genomic data fusion. Bioinformatics 20(16):2626–2635

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Liu M, Wang K (2008) Calpain in the CNS: from synaptic function to neurotoxicity. Sci. STKE 1(14)

    Article  PubMed  Google Scholar 

  36. Moldoveanu T, Hosfield C, Lim D, Jia Z, Davies P (2003) Calpain silencing by a reversible intrinsic mechanism. Nat Struct Mol Biol 10(5):371–378

    Article  CAS  Google Scholar 

  37. Moldoveanu T, Gehring K, Green D (2008) Concerted multi-pronged attack by calpastatin to occlude the catalytic cleft of heterodimeric calpains. Nature 456(7220):404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Molinari M, Anagli J, Carafoli E (1995) PEST sequences do not influence substrate susceptibility to calpain proteolysis. J Biol Chem 270(5):2032

    Article  CAS  PubMed  Google Scholar 

  39. Ono Y, Shimada H, Sorimachi H, Richard I, Saido T, Beckmann J, Ishiura S, Suzuki K (1998) Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem 273(27):17073

    Article  CAS  PubMed  Google Scholar 

  40. Ono Y, Kakinuma K, Torii F, Irie A, Nakagawa K, Labeit S, Abe K, Suzuki K, Sorimachi H (2004) Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. J Biol Chem 279(4):2761

    Article  CAS  PubMed  Google Scholar 

  41. Qian N, Sejnowski T (1988) Predicting the secondary structure of globular proteins using neural network models. J Mol Biol 202(4):865–884

    Article  CAS  PubMed  Google Scholar 

  42. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81(1):27–40

    Article  CAS  PubMed  Google Scholar 

  43. Rögnvaldsson T, You L (2004) Why neural networks should not be used for HIV-1 protease cleavage site prediction. Bioinformatics 20(11):1702–1709

    Article  PubMed  CAS  Google Scholar 

  44. Rolius R, Antoniou C, Nazarova L, Kim S, Cobb G, Gala P, Rajaram P, Li Q, Fung L (2010) Inhibition of calpain but not caspase activity by spectrin fragments. Cell Mol Biol Lett 15(3):395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saido T, Suzuki H, Yamazaki H, Tanoue K, Suzuki K (1993) In situ capture of mu-calpain activation in platelets. J Biol Chem 268(10):7422

    CAS  PubMed  Google Scholar 

  46. Saido T, Yokota M, Nagao S, Yamaura I, Tani E, Tsuchiya T, Suzuki K, Kawashima S (1993) Spatial resolution of fodrin proteolysis in postischemic brain. J Biol Chem 268(33):25239

    CAS  PubMed  Google Scholar 

  47. Saido T, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 8(11):814

    Article  CAS  PubMed  Google Scholar 

  48. Sakai K, Akanuma H, Imahori K, Kawashima S (1987) A unique specificity of a calcium activated neutral protease indicated in histone hydrolysis. J Biochem 101(4):911

    Article  CAS  PubMed  Google Scholar 

  49. Sasaki T, Kikuchi T, Yumoto N, Yoshimura N, Murachi T (1984) Comparative specificity and kinetic studies on porcine calpain I and calpain II with naturally occurring peptides and synthetic fluorogenic substrates. J Biol Chem 259(20):12489

    CAS  PubMed  Google Scholar 

  50. Shen H, Chou K (2008) Hivcleave: a web-server for predicting human immunodeficiency virus protease cleavage sites in proteins. Anal Biochem 375(2):388–390

    Article  CAS  PubMed  Google Scholar 

  51. Song J, Tan H, Shen H, Mahmood K, Boyd S, Webb G, Akutsu T, Whisstock J (2010) Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics 26(6):752

    Article  CAS  PubMed  Google Scholar 

  52. Sonnenburg S, Rätsch G, Schäfer C, Schölkopf B (2006) Large scale multiple kernel learning. J Mach Learn Res 7:1565

    Google Scholar 

  53. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26(1):320–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sorimachi H, Ishiura S, Suzuki K (1997) Structure and physiological function of calpains. Biochem J 328(Pt 3):721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stabach P, Cianci C, Glantz S, Zhang Z, Morrow J (1997) Site-directed mutagenesis of α II spectrin at codon 1175 modulates its μ-calpain susceptibility. Biochemistry 36(1):57–65

    Article  CAS  PubMed  Google Scholar 

  56. Suzuki K, Hata S, Kawabata Y, Sorimachi H (2004) Structure, activation, and biology of calpain. Diabetes 53(Suppl 1):S12

    Article  CAS  PubMed  Google Scholar 

  57. Thompson T, Chou K, Zheng C (1995) Neural network prediction of the HIV-1 protease cleavage sites. J Theor Biol 177(4):369–379

    Article  CAS  PubMed  Google Scholar 

  58. Tompa P, Buzder-Lantos P, Tantos A, Farkas A, Szilágyi A, Bánóczi Z, Hudecz F, Friedrich P (2004) On the sequential determinants of calpain cleavage. J Biol Chem 279(20):20775

    Article  CAS  PubMed  Google Scholar 

  59. Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14(11):4683

    Article  Google Scholar 

  60. Wang K (2000) Calpain and caspase: can you tell the difference? Trends Neurosci 23(1):20–26

    Article  PubMed  Google Scholar 

  61. Wang N, Chen W, Linsel-Nitschke P, Martinez L, Agerholm-Larsen B, Silver D, Tall A (2003) A PEST sequence in ABCA1 regulates degradation by calpain protease and stabilization of ABCA1 by apoA-I. J Clin Investig 111(1):99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wee L, Tan T, Ranganathan S (2006) Svm-based prediction of caspase substrate cleavage sites. BMC Bioinf 7(Suppl 5):S14

    Article  CAS  Google Scholar 

  63. Wee L, Tan T, Ranganathan S (2007) Casvm: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics 23(23):3241

    Article  CAS  PubMed  Google Scholar 

  64. Wells A, Huttenlocher A, Lauffenburger D (2005) Calpain proteases in cell adhesion and motility. Int Rev Cytol 245:1–16

    Article  CAS  PubMed  Google Scholar 

  65. Yang Z (2005) Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks. Bioinformatics 21(9):1831

    Article  CAS  PubMed  Google Scholar 

  66. Yang Z, Chou K (2004) Bio-support vector machines for computational proteomics. Bioinformatics 20(5):735

    Article  CAS  PubMed  Google Scholar 

  67. Zhang Z, Biesiadecki B, Jin J (2006) Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated μ-calpain cleavage. Biochemistry 45(38):11681–11694

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. H. Sorimachi of the Department of Advanced Science for Biomolecules at Tokyo Metropolitan Institute of Medical Science, for providing many insights on the biological aspects of calpain proteolysis and providing us with the crystallography view of calpain–calpastatin docking illustrating this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. duVerle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

duVerle, D.A., Mamitsuka, H. (2019). CalCleaveMKL: a Tool for Calpain Cleavage Prediction. In: Messer, J. (eds) Calpain. Methods in Molecular Biology, vol 1915. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8988-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8988-1_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8987-4

  • Online ISBN: 978-1-4939-8988-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics