Skip to main content

Autopsy Biobanking: Biospecimen Procurement, Integrity, Storage, and Utilization

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1897))

Abstract

An autopsy is a specialized surgical procedure consisting of external and internal examination of a deceased individual for the purposes of documenting abnormalities and determining or confirming medical diagnoses that may have contributed to their death. One of the benefits of an autopsy is the opportunity to collect and store biospecimens for the purposes of biobanking. This chapter outlines the procedures necessary to procure, store, and utilize biospecimens obtained during an autopsy. With the emergence of molecular diagnostics, this chapter also discusses factors that influence the integrity of autopsy biospecimens prior to procurement. These include the postmortem interval, as well as premortem factors such as the patient’s agonal state, biospecimen temperature, and pH.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Marwick C (1995) Pathologists request autopsy revival. JAMA 273(24):1889–1891

    Article  CAS  Google Scholar 

  2. Hull MJ, Nazarian RM, Wheeler AE et al (2007) Resident physician opinions on autopsy importance and procurement. Hum Pathol 38(2):342–350

    Article  Google Scholar 

  3. Nolte KB, Taylor DG, Richmond JY (2002) Biosafety considerations for autopsy. Am J Forensic Med Pathol 23(2):107–122

    Article  Google Scholar 

  4. Finkbeiner WE, Ursell PC, Davis RL (2009) Autopsy pathology: a manual and atlas, 2nd edn. Saunders/Elsevier, San Francisco, CA

    Google Scholar 

  5. Hynd MR, Lewohl JM, Scott HL et al (2003) Biochemical and molecular studies using human autopsy brain tissue. J Neurochem 85(3):543–562

    Article  CAS  Google Scholar 

  6. Lee J, Hever A, Willhite D et al (2005) Effects of RNA degradation on gene expression analysis of human postmortem tissues. FASEB J 19(10):1356–1358

    Article  CAS  Google Scholar 

  7. Blair JA, Wang C, Hernandez D et al (2016) Individual case analysis of postmortem interval time on brain tissue preservation. PLoS One 11(3):e0151615. https://doi.org/10.1371/journal.pone.0151615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yong WH, Dry SM, Shabihkhani M (2014) A practical approach to clinical and research biobanking. Methods Mol Biol 1180:137–162

    Article  CAS  Google Scholar 

  9. Espina V, Mueller C, Edmiston K et al (2009) Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteomics Clin Appl 3(8):874–882

    Article  CAS  Google Scholar 

  10. Barton AJ, Pearson RC, Najlerahim A, Harrison PJ (1993) Pre- and postmortem influences on brain RNA. J Neurochem 61(1):1–11

    Article  CAS  Google Scholar 

  11. Phang TW, Shi CY, Chia JN, Ong CN (1994) Amplification of cDNA via RT-PCR using RNA extracted from postmortem tissues. J Forensic Sci 39(5):1275–1279

    Article  CAS  Google Scholar 

  12. Vennemann M, Koppelkamm A (2010) Postmortem mRNA profiling II: practical considerations. Forensic Sci Int 203(1–3):76–82

    Article  CAS  Google Scholar 

  13. Preece P, Cairns NJ (2003) Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res 118(1–2):60–71

    Article  CAS  Google Scholar 

  14. Kingsbury AE, Foster OJ, Nisbet AP et al (1995) Tissue pH as an indicator of mRNA preservation in human post-mortem brain. Brain Res Mol Brain Res 28(2):311–318

    Article  CAS  Google Scholar 

  15. Li JZ, Vawter MP, Walsh DM et al (2004) Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13(6):609–616

    Article  CAS  Google Scholar 

  16. Tomita H, Vawter MP, Walsh DM et al (2004) Effect of agonal and postmortem factors on gene expression profile: quality control in microarray analyses of postmortem human brain. Biol Psychiatry 55(4):346–352

    Article  CAS  Google Scholar 

  17. Stan AD, Ghose S, Gao XM et al (2006) Human postmortem tissue: what quality markers matter? Brain Res 1123(1):1–11

    Article  CAS  Google Scholar 

  18. Mall G, Eisenmenger W (2005) Estimation of time since death by heat-flow Finite-Element model. Part I: Method, model, calibration and validation. Leg Med (Tokyo) 7(1):1–14

    Article  Google Scholar 

  19. Schroeder A, Mueller O, Stocker S et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7(3):1–14

    Google Scholar 

  20. Ma MJ, Perry A, Brat DJ (eds) (2010) Biopsy pathology of neurodegenerative disorders in adults. Practical surgical neuropathology: a diagnostic approach. Churchill Livingstone/Elsevier, Philadelphia, pp 566–570

    Google Scholar 

  21. Ellison D, Love S et al (2013) Prion diseases. In: Neuropathology: a reference text of CNS pathology, 3rd edn. Mosby/Elsevier, USA, p 676

    Google Scholar 

  22. Liu A, Pollard K (2015) Biobanking for personalized medicine. In: Biobanking in the 21st century. Springer International Publishing, Switzerland, pp 55–68

    Chapter  Google Scholar 

  23. Molina DK (2010) Collection and selection of toxicologic specimens. In: Handbook of forensic toxicology for medical examiners. CRC Press/Taylor & Francis Group, New York, pp 1–6

    Google Scholar 

  24. Teunissen CE, Tumani H, Bennett JL et al (2011) Consensus guidelines for CSF and blood biobanking for CNS biomarker studies. Mult Scler Int 2011:246412

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH:NCI P50-CA211015, NIH:NIMH U24 MH100929, the Art of the Brain Foundation, and the Henry E. Singleton Brain Cancer Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William H. Yong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tashjian, R.S., Williams, R.R., Vinters, H.V., Yong, W.H. (2019). Autopsy Biobanking: Biospecimen Procurement, Integrity, Storage, and Utilization. In: Yong, W. (eds) Biobanking. Methods in Molecular Biology, vol 1897. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8935-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8935-5_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8933-1

  • Online ISBN: 978-1-4939-8935-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics