Skip to main content

Application of Gelatin Zymography in Nanotoxicity Research

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

Gelatin zymography is a relatively simple, inexpensive, and powerful technique to detect proteolytic enzymes capable of degrading gelatin from various biological sources. It has been used particularly to detect the two members of the matrix metalloproteinase family, MMP-2 (gelatinase A) and MMP-9 (gelatinase B), due to their potent gelatin-degrading activity. MMP-2 and MMP-9 are also able to degrade a number of extracellular matrix molecules including type IV, V, and XI collagens, laminin, and aggrecan core protein, thus making them important in the nanotoxicity research. In this technique, proteins are separated by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE), and gelatinases, activated by SDS, digest gelatin embedded in the gel. After staining with Coomassie Brilliant Blue R-250, areas of degradation are visible as clear bands against a blue-stained background. Here, we describe the detailed procedure for gelatin zymography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87(1):69–98. https://doi.org/10.1152/physrev.00022.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, O’Connell J, Docherty A (1994) Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci 732:31–41. https://doi.org/10.1111/j.1749-6632.1994.tb24722.x

    Article  CAS  PubMed  Google Scholar 

  3. Parsons SL, Watson SA, Brown PD, Collins HM, Steele RJ (1997) Matrix metalloproteinase. Br J Surg 84(2):160–166

    Article  CAS  Google Scholar 

  4. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69(3):562–573. https://doi.org/10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  5. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558. https://doi.org/10.1038/sj.bjp.0707130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wan R, Mo Y, Zhang X, Chien S, Tollerud DJ, Zhang Q (2008) Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: the role of oxidative stress and protein tyrosine kinase activation. Toxicol Appl Pharmacol 233(2):276–285. https://doi.org/10.1016/j.taap.2008.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wan R, Mo Y, Chien S, Li Y, Li Y, Tollerud DJ, Zhang Q (2011) The role of hypoxia inducible factor-1α in the increased MMP-2 and MMP-9 production by human monocytes exposed to nickel nanoparticles. Nanotoxicology 5(4):568–582. https://doi.org/10.3109/17435390.2010.537791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Annangi B, Bach J, Vales G, Rubio L, Marcos R (2015) Long-term exposures to low doses of cobalt nanoparticles induce cell transformation enhanced by oxidative damage. Nanotoxicology 9(2):138–147. https://doi.org/10.3109/17435390.2014.900582

    Article  CAS  PubMed  Google Scholar 

  9. Kaberdin VR, McDowall KJ (2003) Expanding the use of zymography by the chemical linkage of small, defined substrates to the gel matrix. Genome Res 13(8):1961–1965. https://doi.org/10.1101/gr.1277303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO (2011) Regulation of matrix metalloproteinase activity in health and disease. FEBS J 278(1):28–45. https://doi.org/10.1111/j.1742-4658.2010.07920.x

    Article  CAS  PubMed  Google Scholar 

  11. Oum’hamed Z, Garnotel R, Josset Y, Trenteseaux C, Lauren-Maquin D (2004) Matrix metalloproteinases MMP-2, -9 and tissue inhibitors TIMP-1, -2 expression and secretion by primary human osteoblast cells in response to titanium, zirconia, and alumina ceramics. J Biomed Mater Res A 68((1):114–122. https://doi.org/10.1002/jbm.a.20001

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the NIESH/NIH (ES023693 and ES028911), KSEF-148-502-16-381, Kentucky Lung Cancer Research Program, and an Intramural Research Incentive Grants (50992) from UofL to Dr. Qunwei Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqun Mo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, Y., Wan, R., Zhang, Q., Mo, Y. (2019). Application of Gelatin Zymography in Nanotoxicity Research. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics