Skip to main content

Pulmonary Function Testing in Animals

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

Nanoparticles possess a number of useful properties that make them useful for a variety of industrial and commercial applications. The small size of nanoparticles means that they are respirable and can penetrate deep into the lung when inhaled. Because of this, there is interest in assessing possible toxic effects of nanoparticles on the respiratory system. Measurement of respiratory mechanics and pulmonary function represents a sensitive way of detecting pathological effects of inhaled substances on the lungs. Here we describe a procedure for conducting pulmonary function measurements in mice using the forced oscillation technique. Measurements of baseline lung mechanics are conducted in anesthetized, mechanically ventilated mice, followed by repeated measurements subsequent to inhalation challenge with aerosolized methacholine. General guidelines for data analysis are provided, and sample results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan-Remillard S, Kapustka L, Goudey S (2009) Nanotechnology. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Nato science for peace and security series C: environmental security. Springer, Dordrecht

    Google Scholar 

  2. Wu T, Tang M (2018) Review of the effects of manufactured nanoparticles on mammalian target organs. J Appl Toxicol 38(1):25–40

    Article  CAS  PubMed  Google Scholar 

  3. Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447–465

    Article  CAS  PubMed  Google Scholar 

  4. Shoeb M, Kodali V, Farris B, Bishop LM, Meighan T, Salmen R, Eye T, Roberts JR, Zeidler-Erdely P, Erdely A, Antonini JM (2017) Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Nanotoxicology 11(6):725–736

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q (2017) Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 14(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beck-Broichsitter M, Ruppert C, Schmehl T, Gunther A, Seeger W (2014) Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles. Biochim Biophys Acta 1838(1 Pt B):474–481

    Article  CAS  PubMed  Google Scholar 

  7. Smith HJ, Reinhold P, Goldman MD (2005) Forced oscillation technique and impluse oscillometry. Eur Respir Mon 31:72–105

    Google Scholar 

  8. Bates JH, Irvin CG, Farre R, Hantos Z (2011) Oscillation mechanics of the respiratory system. Compr Physiol 1(3):1233–1272

    PubMed  Google Scholar 

  9. Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72(1):168–178

    Article  CAS  PubMed  Google Scholar 

  10. Irvin CG, Bates JH (2003) Measuring the lung function in the mouse: the challenge of size. Respir Res 4, 4

    Google Scholar 

  11. Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y, Matalon S (2013) Titanium oxide nanoparticle instillation induces inflammation and inhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol 304(3):L152–L161

    Article  CAS  PubMed  Google Scholar 

  12. Botelho DJ, Leo BF, Massa CB, Sarkar S, Tetley TD, Chung KF, Chen S, Ryan MP, Porter AE, Zhang J, Schwander SK, Gow AJ (2016) Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity. Nanotoxicology 10(1):118–127

    CAS  PubMed  Google Scholar 

  13. Jonasson S, Gustafsson A, Koch B, Bucht A (2013) Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol 25(4):179–191

    Article  CAS  PubMed  Google Scholar 

  14. Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, Gong J, Ryan MP, Zhang JJ, Porter A, Tetley TD, Gow A, Smith R, Chung KF (2016) Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague-Dawley rats. Respir Res 17(1):85

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary W. Hoyle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hoyle, G.W., Schlueter, C.F., Musah, S. (2019). Pulmonary Function Testing in Animals. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics