Skip to main content

Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1883))

Abstract

Reconstruction of causal gene networks can distinguish regulators from targets and reduce false positives by integrating genetic variations. Its recent developments in speed and accuracy have enabled whole-transcriptome causal network inference on a personal computer. Here, we demonstrate this technique with program Findr on 3000 genes from the Geuvadis dataset. Subsequent analysis reveals major hub genes in the reconstructed network.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):nrg.2016.49

    Article  CAS  Google Scholar 

  2. Lappalainen T, Sammeth M, Friedländer MR, ’t Hoen PA, Monlong J, Rivas MA, Gonzàlez-Porta M, Kurbatova N, Griebel T, Ferreira PG, Barann M, Wieland T, Greger L, van Iterson M, Almlöf J, Ribeca P, Pulyakhina I, Esser D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HPJ, Padioleau I, Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O, Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM, The Geuvadis Consortium, Lehrach H, Schreiber S, Sudbrak R, Carracedo A, Antonarakis SE, Häsler R, Syvänen A-C, van Ommen G-J, Brazma A, Meitinger T, Rosenstiel P, Guigó R, Gut IG, Estivill X, Dermitzakis ET (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501(7468):506–511

    Article  CAS  Google Scholar 

  3. The GTEx Consortium (2015) The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348(6235):648–660

    Article  Google Scholar 

  4. Ashley EA (2016) Towards precision medicine. Nat Rev Genet 17(9):507–522

    Article  CAS  Google Scholar 

  5. Schadt EE, Friend SH, Shaywitz DA (2009) A network view of disease and compound screening. Nat Rev Drug Discov 8(4): 286–295

    Article  CAS  Google Scholar 

  6. Talukdar HA, Foroughi Asl H, Jain RK, Ermel R, Ruusalepp A, Franzén O, Kidd BA, Readhead B, Giannarelli C, Kovacic JC, Ivert T, Dudley JT, Civelek M, Lusis AJ, Schadt EE, Skogsberg J, Michoel T, Björkegren JL (2016) Cross-tissue regulatory gene networks in coronary artery disease. Cell Syst 2(3): 196–208

    Article  CAS  Google Scholar 

  7. Rockman MV (2008) Reverse engineering the genotype–phenotype map with natural genetic variation. Nature 456(7223):738–744

    Article  CAS  Google Scholar 

  8. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163

    Article  Google Scholar 

  9. Chen LS, Emmert-Streib F, Storey JD (2007) Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol 8:R219

    Article  Google Scholar 

  10. Millstein J, Chen GK, Breton CV (2016) cit: hypothesis testing software for mediation analysis in genomic applications. Bioinformatics 32(15):2364–2365

    Article  CAS  Google Scholar 

  11. Greenland S (1980) The effect of misclassification in the presence of covariates. Am J Epidemiol 112(4):564–569

    Article  CAS  Google Scholar 

  12. Li Y, Tesson BM, Churchill GA, Jansen RC (2010) Critical reasoning on causal inference in genome-wide linkage and association studies. Trends Genet 26(12):493–498

    Article  Google Scholar 

  13. Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C (2010) Illustrating bias due to conditioning on a collider. Int J Epidemiol 39(2):417–420

    Article  Google Scholar 

  14. Wang L, Michoel T (2017) Efficient and accurate causal inference with hidden confounders from genome-transcriptome variation data. PLoS Comput Biol 13(8):e1005703

    Article  Google Scholar 

  15. Hemani G, Tilling K, Smith GD (2017) Orienting the causal relationship between imprecisely measured traits using genetic instruments. bioRxiv, pp 117101

    Google Scholar 

  16. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100(16):9440–9445

    Article  CAS  Google Scholar 

  17. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28(10):1353–1358

    Article  CAS  Google Scholar 

  18. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O (2016) Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32(10):1479–1485

    Article  CAS  Google Scholar 

  19. Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24(12):1461–1462

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Development of Findr was supported by grants from the BBSRC [BB/J004235/1, BB/M020053/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, L., Michoel, T. (2019). Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data. In: Sanguinetti, G., Huynh-Thu, V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8882-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8882-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8881-5

  • Online ISBN: 978-1-4939-8882-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics