Skip to main content

Production of Immunizing Antigen Proteoliposome Using Cell-Free Protein Synthesis System

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1868))

Abstract

Antibodies specifically recognizing integral membrane protein are essential tool for functional analysis, diagnosis, and therapeutics targeting membrane proteins. However, development of antibodies against membrane protein remains a big challenge, because mass production of membrane protein is difficult. Recently, we developed a highly efficient cell-free production method of proteoliposome antigen using cell-free protein synthesis method with liposome and dialysis cup. Here we introduce practical and efficient integrated procedures to produce large amount of proteoliposome antigen for anti-membrane protein antibody development.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wilkinson TCI (2016) Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 44:831–837. https://doi.org/10.1042/BST20160028

    Article  CAS  PubMed  Google Scholar 

  2. Hino T, Iwata S, Murata T (2013) Generation of functional antibodies for mammalian membrane protein crystallography. Curr Opin Struct Biol 23:563–568. https://doi.org/10.1016/j.sbi.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  3. Webb DR, Handel TM, Kretz-Rommel A, Stevens RC (2013) Opportunities for functional selectivity in GPCR antibodies. Biochem Pharmacol 85:147–152. https://doi.org/10.1016/j.bcp.2012.08.021

    Article  CAS  PubMed  Google Scholar 

  4. Ecker DM, Jones SD, Levine HL (2015) The therapeutic monoclonal antibody market. MAbs 7:9–14. https://doi.org/10.4161/19420862.2015.989042

    Article  CAS  PubMed  Google Scholar 

  5. Hutchings CJ, Koglin M, Marshall FH (2010) Therapeutic antibodies directed at G protein-coupled receptors. MAbs 2:594–606. https://doi.org/10.4161/mabs.2.6.13420

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:1–5. https://doi.org/10.1038/nature10750

    Article  CAS  Google Scholar 

  7. Pone EJ, Zhang J, Mai T et al (2012) BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway. Nat Commun 3:767. https://doi.org/10.1038/ncomms1769

    Article  CAS  PubMed  Google Scholar 

  8. Bill RM, Henderson PJF, Iwata S et al (2011) Overcoming barriers to membrane protein structure determination. Nat Biotechnol 29:335–340. https://doi.org/10.1038/nbt.1833

    Article  CAS  PubMed  Google Scholar 

  9. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666:105–117. https://doi.org/10.1016/j.bbamem.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  10. Dalibor Milić DBV (2015) Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 6:394. https://doi.org/10.3389/fphar.2015.00066

    Article  CAS  Google Scholar 

  11. Nozawa A, Ogasawara T, Matsunaga S et al (2011) Production and partial purification of membrane proteins using a liposome-supplemented wheat cell-free translation system. BMC Biotechnol 11:35. https://doi.org/10.1186/1472-6750-11-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki Y, Ogasawara T, Tanaka Y et al (2018) Functional G-protein-coupled receptor (GPCR) synthesis: the pharmacological analysis of human histamine H1 receptor (HRH1) synthesized by a wheat germ cell-free protein synthesis system combined with asolectin glycerosomes. Front Pharmacol 9:38. https://doi.org/10.3389/fphar.2018.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sackin H, Nanazashvili M, Makino S-I (2015) Direct injection of cell-free Kir1.1 protein into Xenopus oocytes replicates single-channel currents derived from Kir1.1 mRNA. Channels 9:196–199. https://doi.org/10.1080/19336950.2015.1063752

    Article  PubMed  PubMed Central  Google Scholar 

  14. Renauld S, Cortes S, Bersch B et al (2017) Functional reconstitution of cell-free synthesized purified Kv channels. Biochim Biophys Acta 1859:2373–2380. https://doi.org/10.1016/j.bbamem.2017.09.002

    Article  CAS  Google Scholar 

  15. Liu S, Hasegawa H, Takemasa E et al (2017) Efficiency and safety of CRAC inhibitors in human rheumatoid arthritis xenograft models. J Immunol 199:1584–1595. https://doi.org/10.4049/jimmunol.1700192

    Article  CAS  PubMed  Google Scholar 

  16. Hashimoto Y, Zhou W, Hamauchi K, et al (2018) Engineered membrane protein antigens successfully induce antibodies against extracellular regions of claudin-5. Sci Rep 8:8383. https://doi.org/10.1038/s41598-018-26560-9

    Google Scholar 

  17. Takeda H, Ogasawara T, Ozawa T et al (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 5:11,333. https://doi.org/10.1038/srep11333

    Article  Google Scholar 

  18. Gibson DG (2011) Enzymatic assembly of overlapping DNA fragments. Methods Enzymol 498:349–361. https://doi.org/10.1016/B978-0-12-385120-8.00015-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Tomio Ogasawara for his assistance in the technological development. We also thank Professor Tatsuya Sawasaki for his mentoring. This work was mainly supported by Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)) from AMED, Japan. This work was also partially supported by JSPS KAKENHI Grant Numbers 24710251 and 26750375 and 16k01915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhou, W., Takeda, H. (2018). Production of Immunizing Antigen Proteoliposome Using Cell-Free Protein Synthesis System. In: Liu, S. (eds) Rheumatoid Arthritis. Methods in Molecular Biology, vol 1868. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8802-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8802-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8801-3

  • Online ISBN: 978-1-4939-8802-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics