Skip to main content
Book cover

Xenopus pp 133–146Cite as

Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

Xenopus is an attractive model system for regeneration studies, as it exhibits an extraordinary regenerative capacity compared to mammals. It is commonly used to study body part regeneration following amputation, for instance of the limb, the tail, or the retina. Models with more subtle injuries are also needed for human degenerative disease modeling, allowing for the study of stem cell recruitment for the regeneration of a given cellular subtype. We present here a model to ablate photoreceptor cells in the Xenopus retina. This method is based on the nitroreductase/metronidazole (NTR/MTZ) system, a combination of chemical and genetic tools, allowing for the conditional ablation of targeted cells. This type of approach establishes Xenopus as a powerful model to study cellular regeneration and stem cell regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Li J, Zhang S, Amaya E (2016) The cellular and molecular mechanisms of tissue repair and regeneration as revealed by studies in Xenopus. Regeneration 3:198–208. https://doi.org/10.1002/reg2.69

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tseng a-S, Levin M (2008) Tail regeneration in Xenopus laevis as a model for understanding tissue repair. J Dent Res 87:806–816. https://doi.org/10.1177/154405910808700909

    Article  CAS  PubMed  Google Scholar 

  3. Beck CW, Izpisúa Belmonte JC, Christen B (2009) Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms. Dev Dyn 238:1226–1248. https://doi.org/10.1002/dvdy.21890

    Article  CAS  PubMed  Google Scholar 

  4. Slack JMW, Lin G, Chen Y (2008) The Xenopus tadpole: a new model for regeneration research. Cell Mol Life Sci 65:54–63. https://doi.org/10.1007/s00018-007-7431-1

    Article  CAS  PubMed  Google Scholar 

  5. Yoshii C, Ueda Y, Okamoto M, Araki M (2007) Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol 303:45–56. https://doi.org/10.1016/j.ydbio.2006.11.024

    Article  CAS  PubMed  Google Scholar 

  6. Araki M (2007) Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation. Develop Growth Differ 49:109–120. https://doi.org/10.1111/j.1440-169X.2007.00911.x

    Article  Google Scholar 

  7. Araki M (2014) A novel mode of retinal regeneration: the merit of a new Xenopus model. Neural Regen Res 9:2125–2127. https://doi.org/10.4103/1673-5374.147942

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chiba C (2014) The retinal pigment epithelium: an important player of retinal disorders and regeneration. Exp Eye Res 123:107–114. https://doi.org/10.1016/j.exer.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  9. Miyake A, Araki M (2014) Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: a study of retinal regeneration in a novel animal model. Dev Neurobiol. https://doi.org/10.1002/dneu.22169

    Article  Google Scholar 

  10. Ail D, Perron M (2017) Retinal degeneration and regeneration—lessons from fishes and amphibians. Curr Pathobiol Rep 5:67–78. https://doi.org/10.1007/s40139-017-0127-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi RY, Engbretson GA, Solessio EC et al (2011) Cone degeneration following rod ablation in a reversible model of retinal degeneration. Invest Ophthalmol Vis Sci 52:364–373. https://doi.org/10.1167/iovs.10-5347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hamm LM, Tam BM, Moritz OL (2009) Controlled rod cell ablation in transgenic Xenopus laevis. Invest Ophthalmol Vis Sci 50:885–892. https://doi.org/10.1167/iovs.08-2337

    Article  PubMed  Google Scholar 

  13. Langhe R, Chesneau A, Colozza G et al (2017) Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia 65:1333–1349. https://doi.org/10.1002/glia.23165

    Article  PubMed  Google Scholar 

  14. Curado S, Anderson RM, Jungblut B et al (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236:1025–1035. https://doi.org/10.1002/dvdy.21100

    Article  CAS  PubMed  Google Scholar 

  15. Curado S, Stainier D (2008) Nitroreductase-mediated cell/tissue ablation in zebrafish: a spatially and temporally controlled ablation method with applications in developmental and regeneration studies. Nat Protoc 3:948–954. https://doi.org/10.1038/nprot.2008.58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. White DT, Mumm JS (2013) The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish. Methods 62:232–240. https://doi.org/10.1016/j.ymeth.2013.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White DT, Sengupta S, Saxena MT et al (2017) Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina. Proc Natl Acad Sci 114:E3719–E3728. https://doi.org/10.1073/pnas.1617721114

    Article  CAS  PubMed  Google Scholar 

  18. Pipalia TG, Koth J, Roy SD et al (2016) Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 9:671–684. https://doi.org/10.1242/dmm.022251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ariga J, Walker SL, Mumm JS (2010) Multicolor time-lapse imaging of transgenic zebrafish: visualizing retinal stem cells activated by targeted neuronal cell ablation. J Vis Exp. https://doi.org/10.3791/2093

  20. Ohnmacht J, Yang Y, Maurer GW et al (2016) Spinal motor neurons are regenerated after mechanical lesion and genetic ablation in larval zebrafish. Development 143:1464–1474. https://doi.org/10.1242/dev.129155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oosterhof N, Kuil LE, van Ham TJ (2017) Microglial activation by genetically targeted conditional neuronal ablation in the zebrafish. Meth Mol Biol (Clifton, NJ) 1559:377–390

    Article  CAS  Google Scholar 

  22. White YAR, Woods DC, Wood AW (2011) A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis. Dev Dyn 240:1929–1937. https://doi.org/10.1002/dvdy.22695

    Article  CAS  PubMed  Google Scholar 

  23. Fraser B, DuVal MG, Wang H, Allison WT (2013) Regeneration of cone photoreceptors when cell ablation is primarily restricted to a particular cone subtype. PLoS One 8:e55410. https://doi.org/10.1371/journal.pone.0055410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Montgomery JE, Parsons MJ, Hyde DR (2010) A novel model of retinal ablation demonstrates that the extent of rod cell death regulates the origin of the regenerated zebrafish rod photoreceptors. J Comp Neurol 518:800–814. https://doi.org/10.1002/cne.22243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaya F, Mannioui A, Chesneau A et al (2012) Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair. J Neurosci 32:12885–12895. https://doi.org/10.1523/JNEUROSCI.2252-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mannioui A, Vauzanges Q, Fini JB et al (2017) The Xenopus tadpole: an in vivo model to screen drugs favoring remyelination. Mult Scler J. https://doi.org/10.1177/1352458517721355

    Article  Google Scholar 

  27. Knox BE, Schlueter C, Sanger BM et al (1998) Transgene expression in Xenopus rods. FEBS Lett 423:117–121

    Article  CAS  Google Scholar 

  28. Ishibashi S, Kroll KL, Amaya E (2012) Generating transgenic frog embryos by restriction enzyme mediated integration (REMI). Methods Mol Biol 917:185–203. https://doi.org/10.1007/978-1-61779-992-1_11

    Article  CAS  PubMed  Google Scholar 

  29. Chesneau A, Sachs LM, Chai N et al (2008) Transgenesis procedures in Xenopus. Biol Cell 100:503–521. https://doi.org/10.1042/BC20070148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    CAS  PubMed  Google Scholar 

  31. Nieuwkoop P, Faber J (1994) Normal table of Xenopus laevis. In: Garland, TX

    Google Scholar 

  32. Nye HLD, Cameron JA (2005) Strategies to reduce variation in Xenopus regeneration studies. Dev Dyn 234:151–158. https://doi.org/10.1002/dvdy.20508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank B.E. Knox for providing the Rhodopsin promoter plasmid. Our lab is supported by grants from the Fondation pour la Recherche Médicale (FRM), Association Retina France and Fondation Valentin Haüy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Perron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chesneau, A., Bronchain, O., Perron, M. (2018). Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics