Skip to main content

DNA Break Repair in Plants and Its Application for Genome Engineering

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1864))

Abstract

Genome engineering is a biotechnological approach to precisely modify the genetic code of a given organism in order to change the context of an existing sequence or to create new genetic resources, e.g., for obtaining improved traits or performance. Efficient targeted genome alterations are mainly based on the induction of DNA double-strand breaks (DSBs) or adjacent single-strand breaks (SSBs). Naturally, all organisms continuously have to deal with DNA-damaging factors challenging the genetic integrity, and therefore a wide range of DNA repair mechanisms have evolved. A profound understanding of the different repair pathways is a prerequisite to control and enhance targeted gene modifications. DSB repair can take place by nonhomologous end joining (NHEJ) or homology-dependent repair (HDR). As the main outcome of NHEJ-mediated repair is accompanied by small insertions and deletions, it is applicable to specifically knock out genes or to rearrange linkage groups or whole chromosomes. The basic requirement for HDR is the presence of a homologous template; thus this process can be exploited for targeted integration of ectopic sequences into the plant genome. The development of different types of artificial site-specific nucleases allows for targeted DSB induction in the plant genome. Such synthetic nucleases have been used for both qualitatively studying DSB repair in vivo with respect to mechanistic differences and quantitatively in order to determine the role of key factors for NHEJ and HR, respectively. The conclusions drawn from these studies allow for a better understanding of genome evolution and help identifying synergistic or antagonistic genetic interactions while supporting biotechnological applications for transiently modifying the plant DNA repair machinery in favor of targeted genome engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Watanabe K, Yamada N, Takeuchi Y (2006) Oxidative DNA damage in cucumber cotyledons irradiated with ultraviolet light. J Plant Res 119(3):239–246. https://doi.org/10.1007/s10265-006-0266-2

    Article  CAS  PubMed  Google Scholar 

  2. Sharma P, Jha AB, Dubey RS et al (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012(1):1–26. https://doi.org/10.1155/2012/217037

    Article  CAS  Google Scholar 

  3. Sikora P, Chawade A, Larsson M et al (2011) Mutagenesis as a tool in plant genetics, functional genomics, and breeding. Int J Plant Genomics 2011:314829. https://doi.org/10.1155/2011/314829

    Article  CAS  PubMed  Google Scholar 

  4. Chen L, Hao L, Parry MAJ et al (2014) Progress in TILLING as a tool for functional genomics and improvement of crops. J Integr Plant Biol 56(5):425–443. https://doi.org/10.1111/jipb.12192

    Article  PubMed  Google Scholar 

  5. Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530. https://doi.org/10.1101/gr.977903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stingele J, Jentsch S (2015) DNA-protein crosslink repair. Nat Rev Mol Cell Biol 16(8):455–460. https://doi.org/10.1038/nrm4015

    Article  CAS  PubMed  Google Scholar 

  7. Schärer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42(26):2946–2974. https://doi.org/10.1002/anie.200200523

    Article  CAS  PubMed  Google Scholar 

  8. Stadler LJ (1928) Genetic effects of X-rays in maize. Proc Natl Acad Sci U S A 14(1):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muller HJ (1927) Artificial transmutation of the gene. Science 66(1699):84–87. https://doi.org/10.1126/science.66.1699.84

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa H (2009) Induced mutations in plant breeding and biological researches in Japan. Rome: 51

    Google Scholar 

  11. West CE, Waterworth WM, Story GW et al (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31(4):517–528

    Article  CAS  PubMed  Google Scholar 

  12. Manova V, Gecheff K, Stoilov L (2006) Efficient repair of bleomycin-induced double-strand breaks in barley ribosomal genes. Mutat Res 601(1–2):179–190. https://doi.org/10.1016/j.mrfmmm.2006.07.004

    Article  CAS  PubMed  Google Scholar 

  13. Mannuss A, Trapp O, Puchta H (2012) Gene regulation in response to DNA damage. Biochim Biophys Acta 1819(2):154–165. https://doi.org/10.1016/j.bbagrm.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  14. Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301(5633):653–657. https://doi.org/10.1126/science.1086391

    Article  PubMed  Google Scholar 

  15. Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8. https://doi.org/10.1186/s13007-016-0103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jacquier A, Dujon B (1985) An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene. Cell 41(2):383–394

    Article  CAS  PubMed  Google Scholar 

  17. Perrin A, Buckle M, Dujon B (1993) Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron-exon junctions. EMBO J 12(7):2939–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Monteilhet C, Perrin A, Thierry A et al (1990) Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res 18(6):1407–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moure CM, Gimble FS, Quiocho FA (2003) The crystal structure of the gene targeting homing endonuclease I-SceI reveals the origins of its target site specificity. J Mol Biol 334(4):685–695

    Article  CAS  PubMed  Google Scholar 

  20. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:327–350. https://doi.org/10.1146/annurev-arplant-042811-105552

    Article  CAS  PubMed  Google Scholar 

  23. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. https://doi.org/10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pacher M, Puchta H (2017) From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product. Plant J 90(4):819–833. https://doi.org/10.1111/tpj.13469

    Article  CAS  PubMed  Google Scholar 

  26. Zhang K, Raboanatahiry N, Zhu B et al (2017) Progress in genome editing technology and its application in plants. Front Plant Sci 8:177. https://doi.org/10.3389/fpls.2017.00177

    Article  PubMed  PubMed Central  Google Scholar 

  27. Puchta H (2017) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. https://doi.org/10.1016/j.pbi.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  28. Gorbunova V, Levy AA (1999) How plants make ends meet: DNA double-strand break repair. Trends Plant Sci 4(7):263–269

    Article  CAS  PubMed  Google Scholar 

  29. Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56(409):1–14. https://doi.org/10.1093/jxb/eri025

    Article  CAS  PubMed  Google Scholar 

  30. Szostak JW, Orr-Weaver TL, Rothstein RJ et al (1983) The double-strand-break repair model for recombination. Cell 33(1):25–35

    Article  CAS  PubMed  Google Scholar 

  31. Osman K, Higgins JD, Sanchez-Moran E et al (2011) Pathways to meiotic recombination in Arabidopsis thaliana. New Phytol 190(3):523–544. https://doi.org/10.1111/j.1469-8137.2011.03665.x

    Article  CAS  PubMed  Google Scholar 

  32. Eschbach V, Kobbe D (2014) Different replication protein A complexes of Arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition. Plant Cell Physiol 55(8):1460–1472. https://doi.org/10.1093/pcp/pcu076

    Article  CAS  PubMed  Google Scholar 

  33. van Dyck E, Stasiak AZ, Stasiak A et al (2001) Visualization of recombination intermediates produced by RAD52-mediated single-strand annealing. EMBO Rep 2(10):905–909. https://doi.org/10.1093/embo-reports/kve201

    Article  PubMed  PubMed Central  Google Scholar 

  34. Samach A, Melamed-Bessudo C, Avivi-Ragolski N et al (2011) Identification of plant RAD52 homologs and characterization of the Arabidopsis thaliana RAD52-like genes. Plant Cell 23(12):4266–4279. https://doi.org/10.1105/tpc.111.091744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serra H, Da Ines O, Degroote F et al (2013) Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet 9(11):e1003971. https://doi.org/10.1371/journal.pgen.1003971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20(14):5300–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3(11):1049–1054. https://doi.org/10.1093/embo-reports/kvf211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mannuss A, Dukowic-Schulze S, Suer S et al (2010) RAD5A, RECQ4A, and MUS81 have specific functions in homologous recombination and define different pathways of DNA repair in Arabidopsis thaliana. Plant Cell 22(10):3318–3330. https://doi.org/10.1105/tpc.110.078568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bleuyard J-Y, Gallego ME, Savigny F et al (2005) Differing requirements for the Arabidopsis Rad51 paralogs in meiosis and DNA repair. Plant J 41(4):533–545. https://doi.org/10.1111/j.1365-313X.2004.02318.x

    Article  CAS  PubMed  Google Scholar 

  40. Charlot F, Chelysheva L, Kamisugi Y et al (2014) RAD51B plays an essential role during somatic and meiotic recombination in Physcomitrella. Nucleic Acids Res 42(19):11965–11978. https://doi.org/10.1093/nar/gku890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osakabe K, Abe K, Yoshioka T et al (2006) Isolation and characterization of the RAD54 gene from Arabidopsis thaliana. Plant J 48(6):827–842. https://doi.org/10.1111/j.1365-313X.2006.02927.x

    Article  CAS  PubMed  Google Scholar 

  42. Roth N, Klimesch J, Dukowic-Schulze S et al (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72(5):781–790. https://doi.org/10.1111/j.1365-313X.2012.05119.x

    Article  CAS  PubMed  Google Scholar 

  43. Dulieu HL (1975) Somatic variations on a yellow mutant in Nicotianatabacum L. (a1+/a1a2+/a2) II. Reciprocal genetic events occurring in leaf cells. Mutat Res Fundam Mol Mech Mutagen 28(1):69–77. https://doi.org/10.1016/0027-5107(75)90316-4

    Article  Google Scholar 

  44. Carlson PS (1974) Mitotic crossing-over in a higher plant. Genet Res 24(1):109–112. https://doi.org/10.1017/S0016672300015123

    Article  Google Scholar 

  45. Rinehart TA, Dean C, Weil CF (1997) Comparative analysis of non-random DNA repair following Ac transposon excision in maize and Arabidopsis. Plant J 12(6):1419–1427

    Article  CAS  PubMed  Google Scholar 

  46. Athma P, Peterson T (1991) Ac induces homologous recombination at the maize P locus. Genetics 128(1):163–173

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14(5):1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J 35(5):604–612

    Article  CAS  PubMed  Google Scholar 

  49. Vu GTH, Cao HX, Fauser F et al (2017) Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double strand breaks in Arabidopsis thaliana. Plant J 92(1):57–67. https://doi.org/10.1111/tpj.13634

    Article  CAS  PubMed  Google Scholar 

  50. Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13(3):331–339. https://doi.org/10.1046/j.1365-313X.1998.00035.x

    Article  CAS  Google Scholar 

  51. Watanabe K, Pacher M, Dukowic S et al (2009) The structural maintenance of chromosomes 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21(9):2688–2699. https://doi.org/10.1105/tpc.108.060525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vu GTH, Cao HX, Watanabe K et al (2014) Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell 26(5):2156–2167. https://doi.org/10.1105/tpc.114.126607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiurazzi M, Ray A, Viret JF et al (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8(11):2057–2066. https://doi.org/10.1105/tpc.8.11.2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gisler B, Salomon S, Puchta H (2002) The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J 32(3):277–284

    Article  CAS  PubMed  Google Scholar 

  55. Filler Hayut S, Melamed Bessudo C, Levy AA (2017) Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat Commun 8:15605. https://doi.org/10.1038/ncomms15605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Puchta H (1999) DSB-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152:1173–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Shalev G, Levy AA (1997) The maize transposable element Ac induces recombination between the donor site and an homologous ectopic sequence. Genetics 146(3):1143–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Vu GTH, Cao HX, Reiss B et al (2017) Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytol 214(4):1712–1721. https://doi.org/10.1111/nph.14490

    Article  CAS  PubMed  Google Scholar 

  59. Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO J 19(20):5562–5566. https://doi.org/10.1093/emboj/19.20.5562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Orel N, Puchta H (2003) Differences in the processing of DNA ends in Arabidopsis thaliana and tobacco: possible implications for genome evolution. Plant Mol Biol 51(4):523–531

    Article  CAS  PubMed  Google Scholar 

  61. Steinert J, Schiml S, Puchta H (2016) Homology-based double-strand break-induced genome engineering in plants. Plant Cell Rep 35(7):1429–1438. https://doi.org/10.1007/s00299-016-1981-3

    Article  CAS  PubMed  Google Scholar 

  62. Paszkowski J, Baur M, Bogucki A et al (1988) Gene targeting in plants. EMBO J 7(13):4021–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Offringa R, de Groot MJ, Haagsman HJ et al (1990) Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9(10):3077–3084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beetham PR, Kipp PB, Sawycky XL et al (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci U S A 96(15):8774–8778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A 93(10):5055–5060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wright DA, Townsend JA, Winfrey RJ et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705. https://doi.org/10.1111/j.1365-313X.2005.02551.x

    Article  CAS  PubMed  Google Scholar 

  67. Shukla VK, Doyon Y, Miller JC et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. https://doi.org/10.1038/nature07992

    Article  CAS  PubMed  Google Scholar 

  68. Townsend JA, Wright DA, Winfrey RJ et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. https://doi.org/10.1038/nature07845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. de Pater S, Pinas JE, Hooykaas PJJ et al (2013) ZFN-mediated gene targeting of the Arabidopsis protoporphyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11(4):510–515. https://doi.org/10.1111/pbi.12040

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Zhang F, Li X et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27. https://doi.org/10.1104/pp.112.205179

    Article  CAS  PubMed  Google Scholar 

  71. Svitashev S, Young JK, Schwartz C et al (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sauer NJ, Narváez-Vásquez J, Mozoruk J et al (2016) Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants. Plant Physiol 170(4):1917–1928. https://doi.org/10.1104/pp.15.01696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li Z, Liu Z-B, Xing A et al (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970. https://doi.org/10.1104/pp.15.00783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fauser F, Roth N, Pacher M et al (2012) In planta gene targeting. Proc Natl Acad Sci U S A 109(19):7535–7540. https://doi.org/10.1073/pnas.1202191109

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150. https://doi.org/10.1111/tpj.12704

    Article  CAS  PubMed  Google Scholar 

  76. Baltes NJ, Gil-Humanes J, Cermak T et al (2014) DNA replicons for plant genome engineering. Plant Cell 26(1):151–163. https://doi.org/10.1105/tpc.113.119792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Čermák T, Baltes NJ, Čegan R et al (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. https://doi.org/10.1186/s13059-015-0796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Even-Faitelson L, Samach A, Melamed-Bessudo C et al (2011) Localized egg-cell expression of effector proteins for targeted modification of the Arabidopsis genome. Plant J 68(5):929–937. https://doi.org/10.1111/j.1365-313X.2011.04741.x

    Article  CAS  PubMed  Google Scholar 

  79. Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A 102(34):12265–12269. https://doi.org/10.1073/pnas.0502601102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qi Y, Zhang Y, Zhang F et al (2013) Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res 23(3):547–554. https://doi.org/10.1101/gr.145557.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Endo M, Mikami M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170(2):667–677. https://doi.org/10.1104/pp.15.01663

    Article  CAS  PubMed  Google Scholar 

  82. Mimitou EP, Symington LS (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29(19):3358–3369. https://doi.org/10.1038/emboj.2010.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tamura K, Adachi Y, Chiba K et al (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29(6):771–781

    Article  CAS  PubMed  Google Scholar 

  85. West CE, Waterworth WM, Jiang Q et al (2000) Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24(1):67–78

    Article  CAS  PubMed  Google Scholar 

  86. Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34(4):427–440

    Article  CAS  PubMed  Google Scholar 

  87. Nishizawa-Yokoi A, Nonaka S, Saika H et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196(4):1048–1059. https://doi.org/10.1111/j.1469-8137.2012.04350.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gallego ME, Jalut N, White CI (2003) Telomerase dependence of telomere lengthening in Ku80 mutant Arabidopsis. Plant Cell 15(3):782–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stolarek M, Gruszka D, Braszewska-Zalewska A et al (2015) Functional analysis of the new barley gene HvKu80 indicates that it plays a key role in double-strand DNA break repair and telomere length regulation. Mutagenesis 30(6):785–797. https://doi.org/10.1093/mutage/gev033

    Article  CAS  PubMed  Google Scholar 

  90. Bleuyard J-Y, Gallego ME, White CI (2006) Recent advances in understanding of the DNA double-strand break repair machinery of plants. DNA Repair (Amst) 5(1):1–12. https://doi.org/10.1016/j.dnarep.2005.08.017

    Article  CAS  Google Scholar 

  91. Charbonnel C, Gallego ME, White CI (2010) Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. Plant J 64(2):280–290. https://doi.org/10.1111/j.1365-313X.2010.04331.x

    Article  CAS  PubMed  Google Scholar 

  92. Jia Q, den Dulk-Ras A, Shen H et al (2013) Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Mol Biol 82(4–5):339–351. https://doi.org/10.1007/s11103-013-0065-9

    Article  CAS  PubMed  Google Scholar 

  93. Shen H, Strunks GD, Klemann BJPM et al (2017) CRISPR/Cas9-induced double-strand break repair in arabidopsis nonhomologous end-joining mutants. G3 (Bethesda) 7(1):193–202. https://doi.org/10.1534/g3.116.035204

    Article  CAS  Google Scholar 

  94. Wang H, Xu X (2017) Microhomology-mediated end joining: new players join the team. Cell Biosci 7:6. https://doi.org/10.1186/s13578-017-0136-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Truong LN, Li Y, Shi LZ et al (2013) Microhomology-mediated end joining and homologous recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci U S A 110(19):7720–7725. https://doi.org/10.1073/pnas.1213431110

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wyatt DW, Feng W, Conlin MP et al (2016) Essential roles for polymerase θ-mediated end joining in the repair of chromosome breaks. Mol Cell 63(4):662–673. https://doi.org/10.1016/j.molcel.2016.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zahn KE, Averill AM, Aller P et al (2015) Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat Struct Mol Biol 22(4):304–311. https://doi.org/10.1038/nsmb.2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bennardo N, Cheng A, Huang N et al (2008) Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4(6):e1000110. https://doi.org/10.1371/journal.pgen.1000110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chan SH, Yu AM, McVey M (2010) Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet 6(7):e1001005. https://doi.org/10.1371/journal.pgen.1001005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kent T, Chandramouly G, McDevitt SM et al (2015) Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat Struct Mol Biol 22(3):230–237. https://doi.org/10.1038/nsmb.2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mateos-Gomez PA, Gong F, Nair N et al (2015) Mammalian polymerase [thgr] promotes alternative NHEJ and suppresses recombination. Nature 518(7538):254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ceccaldi R, Liu JC, Amunugama R et al (2015) Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518(7538):258–262. https://doi.org/10.1038/nature14184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Inagaki S, Nakamura K, Morikami A (2009) A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 5(8):e1000613. https://doi.org/10.1371/journal.pgen.1000613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klemm T, Mannuß A, Kobbe D et al (2017) The DNA translocase RAD5A acts independently of the other main DNA repair pathways and requires both its ATPase and RING domain for activity in Arabidopsis thaliana. Plant J 91(4):725–740. https://doi.org/10.1111/tpj.13602

    Article  CAS  PubMed  Google Scholar 

  105. van Kregten M, de Pater S, Romeijn R et al (2016) T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nat Plants 2(11):16164. https://doi.org/10.1038/nplants.2016.164

    Article  CAS  PubMed  Google Scholar 

  106. Yu AM, McVey M (2010) Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res 38(17):5706–5717. https://doi.org/10.1093/nar/gkq379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25(22):4650–4657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Salomon S, Puchta H (1998) Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO J 17(20):6086–6095. https://doi.org/10.1093/emboj/17.20.6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Geisinger JM, Turan S, Hernandez S et al (2016) In vivo blunt-end cloning through CRISPR/Cas9-facilitated non-homologous end-joining. Nucleic Acids Res 44(8):e76. https://doi.org/10.1093/nar/gkv1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li J, Meng X, Zong Y et al (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139. https://doi.org/10.1038/nplants.2016.139

    Article  CAS  PubMed  Google Scholar 

  111. Schiml S, Fauser F, Puchta H (2016) Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc Natl Acad Sci U S A 113(26):7266–7271. https://doi.org/10.1073/pnas.1603823113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vaughn JN, Bennetzen JL (2014) Natural insertions in rice commonly form tandem duplications indicative of patch-mediated double-strand break induction and repair. Proc Natl Acad Sci U S A 111(18):6684–6689. https://doi.org/10.1073/pnas.1321854111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8(2):135–141. https://doi.org/10.1016/j.pbi.2005.01.001

    Article  CAS  PubMed  Google Scholar 

  114. Bennetzen JL, Wang H (2014) The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol 65:505–530. https://doi.org/10.1146/annurev-arplant-050213-035811

    Article  CAS  PubMed  Google Scholar 

  115. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12(7):1075–1079. https://doi.org/10.1101/gr.132102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schubert I, Vu GTH (2016) Genome Stability and Evolution: Attempting a Holistic View. Trends Plant Sci 21(9):749–757. https://doi.org/10.1016/j.tplants.2016.06.003

    Article  CAS  PubMed  Google Scholar 

  117. Hawkins JS, Proulx SR, Rapp RA et al (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci U S A 106(42):17811–17816. https://doi.org/10.1073/pnas.0904339106

    Article  PubMed  PubMed Central  Google Scholar 

  118. Cavalier-Smith T (2005) Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Ann Bot 95(1):147–175. https://doi.org/10.1093/aob/mci010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Overbeek M, Capurso D, Carter MM et al (2016) DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol Cell 63(4):633–646. https://doi.org/10.1016/j.molcel.2016.06.037

    Article  CAS  PubMed  Google Scholar 

  120. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li J-F, Norville JE, Aach J et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. https://doi.org/10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang M, Mao Y, Lu Y et al (2017) Multiplex gene editing in rice using the CRISPR-Cpf1 system. Mol Plant 10(7):1011–1013. https://doi.org/10.1016/j.molp.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  124. Zetsche B, Heidenreich M, Mohanraju P et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737

    Article  CAS  PubMed  Google Scholar 

  125. Williams GJ, Lees-Miller SP, Tainer JA (2010) Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299–1306. https://doi.org/10.1016/j.dnarep.2010.10.001

    Article  CAS  Google Scholar 

  126. Zapata L, Ding J, Willing E-M et al (2016) Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A 113(28):60. https://doi.org/10.1073/pnas.1607532113

    Article  CAS  Google Scholar 

  127. Petolino JF, Worden A, Curlee K et al (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73(6):617–628. https://doi.org/10.1007/s11103-010-9641-4

    Article  CAS  PubMed  Google Scholar 

  128. Kapusi E, Corcuera-Gómez M, Melnik S et al (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8:540. https://doi.org/10.3389/fpls.2017.00540

    Article  PubMed  PubMed Central  Google Scholar 

  129. Qi Y, Li X, Zhang Y et al (2013) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 (Bethesda) 3(10):1707–1715. https://doi.org/10.1534/g3.113.006270

    Article  CAS  PubMed Central  Google Scholar 

  130. Ordon J, Gantner J, Kemna J et al (2017) Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. Plant J 89(1):155–168. https://doi.org/10.1111/tpj.13319

    Article  CAS  PubMed  Google Scholar 

  131. Zhou H, Liu B, Weeks DP et al (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42(17):10903–10914. https://doi.org/10.1093/nar/gku806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fransz PF, Armstrong S, de Jong JH et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100(3):367–376

    Article  CAS  PubMed  Google Scholar 

  133. Lee HJ, Kweon J, Kim E et al (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22(3):539–548. https://doi.org/10.1101/gr.129635.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Y, Park AI, Mou H et al (2015) A versatile reporter system for CRISPR-mediated chromosomal rearrangements. Genome Biol 16:111. https://doi.org/10.1186/s13059-015-0680-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang C, Liu C, Weng J et al (2017) Creation of targeted inversion mutations in plants using an RNA-guided endonuclease. Crop J 5(1):83–88. https://doi.org/10.1016/j.cj.2016.08.001

    Article  CAS  Google Scholar 

  136. Pacher M, Schmidt-Puchta W, Puchta H (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175(1):21–29. https://doi.org/10.1534/genetics.106.065185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162(1):390–400. https://doi.org/10.1104/pp.112.212910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zheng Q, Cai X, Tan MH et al (2014) Precise gene deletion and replacement using the CRISPR/Cas9 system in human cells. BioTechniques 57(3):115–124. https://doi.org/10.2144/000114196

    Article  CAS  PubMed  Google Scholar 

  139. Byrne SM, Ortiz L, Mali P et al (2015) Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 43(3):e21. https://doi.org/10.1093/nar/gku1246

    Article  CAS  PubMed  Google Scholar 

  140. Arazoe T, Miyoshi K, Yamato T et al (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112(12):2543–2549. https://doi.org/10.1002/bit.25662

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Puchta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schmidt, C., Pacher, M., Puchta, H. (2019). DNA Break Repair in Plants and Its Application for Genome Engineering. In: Kumar, S., Barone, P., Smith, M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8778-8_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8777-1

  • Online ISBN: 978-1-4939-8778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics