Skip to main content

SNAP-25 S-Guanylation and SNARE Complex Formation

  • Protocol
  • First Online:
SNAREs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1860))

Abstract

8-Nitroguanosine 3′,5′-cyclic monophosphate (8-nitro-cGMP), which is the second messenger in nitric oxide/reactive oxygen species redox signaling, covalently binds to protein thiol groups (called S-guanylation) and exerts various biological functions. Synaptosomal associated protein 25 (SNAP-25), a member of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, plays an important role in the process of membrane fusion. We previously showed that SNAP-25 is S-guanylated at cysteine 90. In addition, we revealed that S-guanylation of SNAP-25 increases SNARE complex formation, but decreases the affinity of SNARE complex for complexin. Since SNAP-25 plays a critical role in regulating exocytosis, it is important to elucidate the physiological or pathophysiological meanings of S-guanylation of this protein. Here we describe a protocol for detecting 8-nitro-cGMP and S-guanylated proteins in cells by immunocytochemistry, and methods to detect SNARE complex in 8-nitro-cGMP-treated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishida M, Kumagai Y, Ihara H, Fujii S, Motohashi H, Akaike T (2016) Redox signaling regulated by electrophiles and reactive sulfur species. J Clin Biochem Nutr 58(2):91–98. https://doi.org/10.3164/jcbn.15-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sawa T, Ihara H, Ida T, Fujii S, Nishida M, Akaike T (2013) Formation, signaling functions, and metabolisms of nitrated cyclic nucleotide. Nitric Oxide 34:10–18. https://doi.org/10.1016/j.niox.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Sawa T, Zaki MH, Okamoto T, Akuta T, Tokutomi Y, Kim-Mitsuyama S, Ihara H, Kobayashi A, Yamamoto M, Fujii S, Arimoto H, Akaike T (2007) Protein S-guanylation by the biological signal 8-nitroguanosine 3′,5′-cyclic monophosphate. Nat Chem Biol 3(11):727–735. https://doi.org/10.1038/nchembio.2007.33

    Article  CAS  PubMed  Google Scholar 

  4. Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T, Ahtesham AK, Ishima Y, Motohashi H, Yamamoto M, Akaike T (2010) The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem 285(31):23970–23984. https://doi.org/10.1074/jbc.M110.145441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ihara H, Kasamatsu S, Kitamura A, Nishimura A, Tsutsuki H, Ida T, Ishizaki K, Toyama T, Yoshida E, Abdul Hamid H, Jung M, Matsunaga T, Fujii S, Sawa T, Nishida M, Kumagai Y, Akaike T (2017) Exposure to electrophiles impairs reactive persulfide-dependent redox signaling in neuronal cells. Chem Res Toxicol 30(9):1673–1684. https://doi.org/10.1021/acs.chemrestox.7b00120

    Article  CAS  PubMed  Google Scholar 

  6. Kunieda K, Tsutsuki H, Ida T, Kishimoto Y, Kasamatsu S, Sawa T, Goshima N, Itakura M, Takahashi M, Akaike T, Ihara H (2015) 8-nitro-cGMP enhances SNARE complex formation through S-guanylation of Cys90 in SNAP25. ACS Chem Neurosci 6(10):1715–1725. https://doi.org/10.1021/acschemneuro.5b00196

    Article  CAS  PubMed  Google Scholar 

  7. Brunger AT (2005) Structure and function of SNARE and SNARE-interacting proteins. Q Rev Biophys 38(1):1–47. https://doi.org/10.1017/S0033583505004051

    Article  CAS  PubMed  Google Scholar 

  8. Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419):201–207. https://doi.org/10.1038/nature11320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohrmann R, Dhara M, Bruns D (2015) Complexins: small but capable. Cell Mol Life Sci 72(22):4221–4235. https://doi.org/10.1007/s00018-015-1998-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kishimoto Y, Kunieda K, Kitamura A, Kakihana Y, Akaike T, Ihara H (2017) 8-nitro-cGMP attenuates the interaction between SNARE complex and complexin through S-guanylation of SNAP-25. ACS Chem Neurosci 9:217. https://doi.org/10.1021/acschemneuro.7b00363

    Article  CAS  PubMed  Google Scholar 

  11. Di Stasi AM, Mallozzi C, Macchia G, Maura G, Petrucci TC, Minetti M (2002) Peroxynitrite affects exocytosis and SNARE complex formation and induces tyrosine nitration of synaptic proteins. J Neurochem 82(2):420–429. https://doi.org/10.1046/j.1471-4159.2002.00980.x

    Article  CAS  Google Scholar 

  12. Meffert MK, Calakos NC, Scheller RH, Schulman H (1996) Nitric oxide modulates synaptic vesicle docking fusion reactions. Neuron 16(6):1229–1236. https://doi.org/10.1016/S0896-6273(00)80149-X

    Article  CAS  Google Scholar 

  13. Ramos-Miguel A, Beasley CL, Dwork AJ, Mann JJ, Rosoklija G, Barr AM, Honer WG (2015) Increased SNARE protein-protein interactions in orbitofrontal and anterior cingulate cortices in schizophrenia. Biol Psychiatry 78(6):361–373. https://doi.org/10.1016/j.biopsych.2014.12.012

    Article  CAS  PubMed  Google Scholar 

  14. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428. https://doi.org/10.1038/nprot.2006.62

    Article  CAS  PubMed  Google Scholar 

  15. Tamura S (2008) PSSJ Archives, 1, e015. http://www.pssj.jp/archives/protocol/measurement/blue_01/blue_01.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideshi Ihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kishimoto, Y., Akaike, T., Ihara, H. (2019). SNAP-25 S-Guanylation and SNARE Complex Formation. In: Fratti, R. (eds) SNAREs. Methods in Molecular Biology, vol 1860. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8760-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8760-3_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8759-7

  • Online ISBN: 978-1-4939-8760-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics