Skip to main content

TEMED Enhanced Photoluminescent Imaging of Human Serum Proteins by Quantum Dots After PAGE

  • Protocol
  • First Online:
Protein Gel Detection and Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1853))

  • 2276 Accesses

Abstract

Polyacrylamide gel electrophoresis (PAGE) has become one of the most powerful and widely used separation techniques for complex biological samples, whose traditional detection methods include organic dye or silver staining. For simple, convenient, and ultrasensitive detection of proteins after PAGE, a novel enhanced photoluminescent (PL) imaging method was developed. Thioglycolic acid (TGA)-capped CdTe quantum dots (QDs) and the enhancer reagent tetramethylethylenediamine (TEMED) were introduced, achieving the direct detection of various proteins in native 1-DE, 2-DE and SDS-PAGE. Here we describe the general protocol of TEMED enhanced PL imaging by QDs, including materials, practical procedures, and some notes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson NL, Anderson NG (2002) The human plasma proteome—history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  CAS  PubMed  Google Scholar 

  2. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  PubMed  Google Scholar 

  3. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  4. Gill R, Zayats M, Willner I (2008) Semiconductor quantum dots for bioanalysis. Angew Chem Int Ed 47:7602–7625

    Article  CAS  Google Scholar 

  5. Zhang J, Sajid M, Na N, Huang L, He D, Ouyang J (2012) The application of Au nanoclusters in the fluorescence imaging of human serum proteins after native PAGE: enhancing detection by low-temperature plasma treatment. Biosens Bioelectron 35:313–318

    Article  CAS  PubMed  Google Scholar 

  6. Wang Y, Zhang J, Huang L, He D, Ma L, Ouyang J, Jiang F (2012) Novel application of Ag Nanoclusters in fluorescent imaging of human serum proteins after native polyacrylamide gel electrophoresis (PAGE). Chem Eur J 18:1432–1437

    Article  CAS  PubMed  Google Scholar 

  7. Liu P, Na N, Huang L, He D, Huang C, Ouyang J (2012) The application of amine-terminated silicon quantum dots on the imaging of human serum proteins after polyacrylamide gel electrophoresis (PAGE). Chem Eur J 18:1438–1443

    Article  CAS  PubMed  Google Scholar 

  8. Na N, Liu T, Xu S, Zhang Y, He D, Huang L, Jin O (2013) Application of fluorescent carbon nanodots in fluorescence imaging of human serum proteins. J Mater Chem B 1:787–792

    Article  CAS  PubMed  Google Scholar 

  9. Na N, Zhang J, You Y, Su S, Ouyang J (2014) Colloidal Au nanoparticle-based “turn on” fluorescence imaging for in-gel protein detection. J Mater Chem B 2:2654–2657

    Article  CAS  PubMed  Google Scholar 

  10. Xu S, Liu P, Lu X, Zhang J, Huang L, Hua W, He D, Ouyang J (2014) A highly sensitive “turn-on” fluorescent sensor for the detection of human serum proteins based on the size exclusion of the polyacrylamide gel. Electrophoresis 35:546–553

    Article  CAS  PubMed  Google Scholar 

  11. Duncan TV, Polanco MAM, Kim Y, Park SJ (2009) Improving the quantum yields of semiconductor quantum dots through photoenhancement assisted by reducing agents. J Phys Chem C 113:7561–7566

    Article  CAS  Google Scholar 

  12. Rene-Boisneuf L, Scaiano JC (2008) Sensitivity versus stability: making quantum dots more luminescent by sulfur photocuring without compromising sensor response. Chem Mater 20:6638–6642

    Article  CAS  Google Scholar 

  13. Park C, Yoon TH (2010) L-Cysteine-induced photoluminescence enhancement of CdSe/ZnSe quantum dots in aqueous solution. Colloids Surf B 75:472–477

    Article  CAS  Google Scholar 

  14. DeGroot MW, Taylor NJ, Corrigan JF (2003) Zinc chalcogenolate complexes as capping agents in the synthesis of ternary II-II '-VI nanoclusters: structure and photophysical properties of [(N,N '-tmeda)(5)Zn5Cd11Se13(SePh)(6)(thf)(2)]. J Am Chem Soc 125:864–865

    Article  CAS  PubMed  Google Scholar 

  15. Cusack J, Drew MGB, Spalding TR (2004) Syntheses and spectroscopy of diamine complexes of Zn(II) and Cd(II) ethylxanthates and the molecular structures of [M(S2COEt)(2)TMEDA]: formation of US nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA]. Polyhedron 23:2315–2321

    Article  CAS  Google Scholar 

  16. Kedarnath G, Kumbhare LB, Jain VK, Phadnis PP, Nethaji M (2006) Group 12 metal monoselenocarboxylates: synthesis, characterization, structure and their transformation to metal selenide (MSe; M = Zn, Cd, Hg) nanoparticles. Dalton Trans:2714–2718

    Google Scholar 

  17. Jun YW, Koo JE, Cheon J (2000) One-step synthesis of size tuned zinc selenide quantum dots via a temperature controlled molecular precursor approach. Chem Commun:1243–1244

    Google Scholar 

  18. Na N, Liu L, Taes YEC, Zhang CL, Huang BR, Liu YL, Ma L, Ouyang J (2010) Direct CdTe quantum-dot-based fluorescence imaging of human serum proteins. Small 6:1589–1592

    Article  CAS  PubMed  Google Scholar 

  19. Wang Q, Kuo Y, Wang Y, Shin G, Ruengruglikit C, Huang Q (2006) Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J Phys Chem B 110:16860–16866

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Zhou Z, Yang B, Gao M (2003) The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J Phys Chem B 107:8–13

    Article  CAS  Google Scholar 

  21. Huang CG, Na N, Huang LY, He DC, Ouyang J (2010) TEMED enhanced photoluminescent imaging detection of proteins in human serum using quantum dots after PAGE. J Proteome Res 9:5574–5581

    Article  CAS  PubMed  Google Scholar 

  22. Ge SG, Zhang CC, Zhu YN, Yu JH, Zhang SS (2010) BSA activated CdTe quantum dot nanosensor for antimony ion detection. Analyst 135:111–115

    Article  CAS  PubMed  Google Scholar 

  23. Idowu M, Lamprecht E, Nyokong T (2008) Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol A 198:7–12

    Article  CAS  Google Scholar 

Download references

Acknowledgment

J. Ouyang thanks the financial support by the National Nature Science Foundation of China (21475011 and 21675014) and National Grant of Basic Research Program of China (2011CB915504). N. Na thanks the financial support provided by the National Nature Science Foundation of China (214220503 and 21675015) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ouyang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Na, N., Ouyang, J. (2018). TEMED Enhanced Photoluminescent Imaging of Human Serum Proteins by Quantum Dots After PAGE. In: Kurien, B., Scofield, R. (eds) Protein Gel Detection and Imaging. Methods in Molecular Biology, vol 1853. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8745-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8745-0_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8744-3

  • Online ISBN: 978-1-4939-8745-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics