Skip to main content

Ancestral Sequence Reconstruction as a Tool for the Elucidation of a Stepwise Evolutionary Adaptation

  • Protocol
  • First Online:
Computational Methods in Protein Evolution

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1851))

Abstract

Ancestral sequence reconstruction (ASR) is a powerful tool to infer primordial sequences from contemporary, i.e., extant ones. An essential element of ASR is the computation of a phylogenetic tree whose leaves are the chosen extant sequences. Most often, the reconstructed sequence related to the root of this tree is of greatest interest: It represents the common ancestor (CA) of the sequences under study. If this sequence encodes a protein, one can “resurrect” the CA by means of gene synthesis technology and study biochemical properties of this extinct predecessor with the help of wet-lab experiments.

However, ASR deduces also sequences for all internal nodes of the tree, and the well-considered analysis of these “intermediates” can help to elucidate evolutionary processes. Moreover, one can identify key mutations that alter proteins or protein complexes and are responsible for the differing properties of extant proteins. As an illustrative example, we describe the protocol for the rapid identification of hotspots determining the binding of the two subunits within the heteromeric complex imidazole glycerol phosphate synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005. https://doi.org/10.1038/nrm2281

    Article  CAS  PubMed  Google Scholar 

  2. Schymkowitz J, Borg J, Stricher F et al (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Janda JO, Meier A, Merkl R (2013) CLIPS-4D: a classifier that distinguishes structurally and functionally important residue-positions based on sequence and 3D data. Bioinformatics 29(23):3029–3035. https://doi.org/10.1093/bioinformatics/btt519

    Article  CAS  PubMed  Google Scholar 

  4. Zellner H, Staudigel M, Trenner T et al (2012) PresCont: predicting protein-protein interfaces utilizing four residue properties. Proteins 80(1):154–168. https://doi.org/10.1002/prot.23172

    Article  CAS  PubMed  Google Scholar 

  5. Plach MG, Löffler P, Merkl R, Sterner R (2015) Conversion of anthranilate synthase into isochorismate synthase: implications for the evolution of chorismate-utilizing enzymes. Angew Chem Int Ed 54(38):11270–11274. https://doi.org/10.1002/anie.201505063

    Article  CAS  Google Scholar 

  6. Edgar RC, Batzoglou S (2006) Multiple sequence alignment. Curr Opin Struct Biol 16(3):368–373

    Article  CAS  PubMed  Google Scholar 

  7. Harms MJ, Thornton JW (2010) Analyzing protein structure and function using ancestral gene reconstruction. Curr Opin Struct Biol 20(3):360–366. https://doi.org/10.1016/j.sbi.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  9. Gerlt JA (2017) Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56(33):4293–4308. https://doi.org/10.1021/acs.biochem.7b00614

    Article  CAS  PubMed  Google Scholar 

  10. Merkl R, Sterner R (2016) Ancestral protein reconstruction: techniques and applications. Biol Chem 397(1):1–21. https://doi.org/10.1515/hsz-2015-0158

    Article  CAS  PubMed  Google Scholar 

  11. Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5(5):366–375. https://doi.org/10.1038/nrg1324

    Article  CAS  PubMed  Google Scholar 

  12. Liberles DA (2007) Ancestral sequence reconstruction. Oxford University Press, Oxford

    Book  Google Scholar 

  13. Hochberg GKA, Thornton JW (2017) Reconstructing ancient proteins to understand the causes of structure and function. Annu Rev Biophys 46:247–269. https://doi.org/10.1146/annurev-biophys-070816-033631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. https://doi.org/10.1038/nature11117

    Article  CAS  PubMed  Google Scholar 

  15. Romero-Romero ML, Risso VA, Martinez-Rodriguez S et al (2016) Engineering ancestral protein hyperstability. Biochem J 473(20):3611–3620. https://doi.org/10.1042/BCJ20160532

    Article  CAS  PubMed  Google Scholar 

  16. Massiere F, Badet-Denisot MA (1998) The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci 54(3):205–222

    Article  CAS  PubMed  Google Scholar 

  17. Zalkin H, Smith JL (1998) Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72:87–144

    CAS  PubMed  Google Scholar 

  18. Beismann-Driemeyer S, Sterner R (2001) Imidazole glycerol phosphate synthase from Thermotoga maritima. Quaternary structure, steady-state kinetics, and reaction mechanism of the bienzyme complex. J Biol Chem 276(23):20387–20396

    Article  CAS  PubMed  Google Scholar 

  19. List F, Vega MC, Razeto A et al (2012) Catalysis uncoupling in a glutamine amidotransferase bienzyme by unblocking the glutaminase active site. Chem Biol 19(12):1589–1599. https://doi.org/10.1016/j.chembiol.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  20. Reisinger B, Sperl J, Holinski A et al (2014) Evidence for the existence of elaborate enzyme complexes in the Paleoarchean era. J Am Chem Soc 136(1):122–129. https://doi.org/10.1021/ja4115677

    Article  CAS  PubMed  Google Scholar 

  21. Holinski A, Heyn K, Merkl R, Sterner R (2017) Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins 85(2):312–321. https://doi.org/10.1002/prot.25225

    Article  CAS  PubMed  Google Scholar 

  22. Bar-Rogovsky H, Stern A, Penn O et al (2015) Assessing the prediction fidelity of ancestral reconstruction by a library approach. Protein Eng Des Sel 28(11):507–518. https://doi.org/10.1093/protein/gzv038

    Article  CAS  PubMed  Google Scholar 

  23. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  24. Pruitt KD, Tatusova T, Klimke W, Maglott DR (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res 37(Database issue):D32–D36. https://doi.org/10.1093/nar/gkn721

    Article  CAS  PubMed  Google Scholar 

  25. Apweiler R, Martin M, O’Donovan C et al (2013) Update on activities at the Universal Protein Resource (UniProt) in 2013. Nucleic Acids Res 41(D 1):D43–D47

    Google Scholar 

  26. Hunter S, Jones P, Mitchell A et al (2012) InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res 40(Database issue):D306–D312. https://doi.org/10.1093/nar/gkr948

    Article  CAS  PubMed  Google Scholar 

  27. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. https://doi.org/10.1093/molbev/mst010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ, (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552

    Article  CAS  PubMed  Google Scholar 

  30. Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25(17):2286–2288. https://doi.org/10.1093/bioinformatics/btp368

    Article  CAS  PubMed  Google Scholar 

  31. Ali RH, Bark M, Miro J et al (2017) VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces. BMC Bioinformatics 18(1):97. https://doi.org/10.1186/s12859-017-1505-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574

    Article  CAS  PubMed  Google Scholar 

  33. Bouckaert R, Heled J, Kuhnert D et al (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21(9):2104–2105. https://doi.org/10.1093/bioinformatics/bti263

    Article  CAS  PubMed  Google Scholar 

  35. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78(5):364–369

    Article  CAS  PubMed  Google Scholar 

  36. Rambaut A (2012) FigTree v1.4. http://tree.bio.ed.ac.uk/software/figtree/

  37. Ciccarelli FD, Doerks T, von Mering C et al (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311(5765):1283–1287

    Article  CAS  PubMed  Google Scholar 

  38. Puigbo P, Wolf YI, Koonin EV (2009) Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8(6):59. https://doi.org/10.1186/jbiol159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088

    Article  CAS  PubMed  Google Scholar 

  40. Ashkenazy H, Penn O, Doron-Faigenboim A et al (2012) FastML: a web server for probabilistic reconstruction of ancestral sequences. Nucleic Acids Res 40(Web Server issue):W580–W584. https://doi.org/10.1093/nar/gks498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pürzer A, Grassmann F, Birzer D, Merkl R (2011) Key2Ann: a tool to process sequence sets by replacing database identifiers with a human-readable annotation. J Integr Bioinform 8(1):153. https://doi.org/10.2390/biecoll-jib-2011-153

    Article  Google Scholar 

  42. Löytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320(5883):1632–1635. https://doi.org/10.1126/science.1158395

    Article  CAS  PubMed  Google Scholar 

  43. Holmes IH (2017) Historian: accurate reconstruction of ancestral sequences and evolutionary rates. Bioinformatics 33(8):1227–1229. https://doi.org/10.1093/bioinformatics/btw791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Krieger E, Joo K, Lee J et al (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77 Suppl 9:114–122. https://doi.org/10.1002/prot.22570

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21(7):951–960. https://doi.org/10.1093/bioinformatics/bti125

    Article  PubMed  Google Scholar 

  47. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Methods Mol Biol 1137:1–15. https://doi.org/10.1007/978-1-4939-0366-5_1

    Article  CAS  PubMed  Google Scholar 

  48. Guerois R, Nielsen JE, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320(2):369–387

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Deutsche Forschungsgemeinschaft (ME2259/2-1). Calculations were facilitated by using advanced computational infrastructure provided by the Leibniz Supercomputing Center of the Bavarian Academy of Sciences and Humanities ( www.lrz.de ) under grant pr48fu. We thank Samuel Blanquart for continuous support, many helpful hints, and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Merkl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Straub, K., Merkl, R. (2019). Ancestral Sequence Reconstruction as a Tool for the Elucidation of a Stepwise Evolutionary Adaptation. In: Sikosek, T. (eds) Computational Methods in Protein Evolution. Methods in Molecular Biology, vol 1851. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8736-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8736-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8735-1

  • Online ISBN: 978-1-4939-8736-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics