Skip to main content

Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1834))

Abstract

Retinitis pigmentosa (RP) is a complex inherited disease. It is associated with mutations in a wide variety of genes with many different functions. These mutations impact the integrity of rod photoreceptors and ultimately result in the progressive degeneration of rods and cone photoreceptors in the retina, leading to complete blindness. A hallmark of this disease is the variable degree to which symptoms are manifest in patients. This is indicative of the influence of the environment, and/or of the distinct genetic makeup of the individual.

The fruit fly, Drosophila melanogaster, has effectively proven to be a great model system to better understand interconnected genetic networks. Unraveling genetic interactions and thereby different cellular processes is relatively easy because more than a century of research on flies has enabled the creation of sophisticated genetic tools to perturb gene function. A remarkable conservation of disease genes across evolution and the similarity of the general organization of the fly and vertebrate photoreceptor cell had prompted research on fly retinal degeneration. To date six fly models for RP, including RP4, RP11, RP12, RP14, RP25, and RP26, have been established, and have provided useful information on RP disease biology. In this chapter, an outline of approaches and experimental specifications are described to enable utilizing or developing new fly models of RP.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kiselev A, Subramaniam S (1994) Activation and regeneration of rhodopsin in the insect visual cycle. Science 266(5189):1369–1373

    CAS  PubMed  Google Scholar 

  2. Wang X, Wang T, Jiao Y, von Lintig J, Montell C (2010) Requirement for an enzymatic visual cycle in Drosophila. Curr Biol 20(2):93–102. https://doi.org/10.1016/j.cub.2009.12.022

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Wang T, Ni JD, von Lintig J, Montell C (2012) The Drosophila visual cycle and de novo chromophore synthesis depends on rdhB. J Neurosci 32(10):3485–3491. https://doi.org/10.1523/JNEUROSCI.5350-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Montell C (2012) Drosophila visual transduction. Trends Neurosci 35(6):356–363. https://doi.org/10.1016/j.tins.2012.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang T, Montell C (2007) Phototransduction and retinal degeneration in Drosophila. Pflügers Arch 454:821–847

    CAS  PubMed  Google Scholar 

  6. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53(2):217–240

    CAS  PubMed  Google Scholar 

  7. Cagan RL, Ready DF (1989) The emergence of order in the Drosophila pupal retina. Dev Biol 136:346–362

    CAS  PubMed  Google Scholar 

  8. Heavner W, Pevny L (2012) Eye development and retinogenesis. Cold Spring Harb Perspect Biol 4(12). https://doi.org/10.1101/cshperspect.a008391

    PubMed  PubMed Central  Google Scholar 

  9. Amini R, Rocha-Martins M, Norden C (2018) Neuronal migration and lamination in the vertebrate retina. Front Neurosci 11(742). https://doi.org/10.3389/fnins.2017.00742. PMID: 29375289

  10. Kumar JP (2017) The fly eye: through the looking glass. Dev Dyn. https://doi.org/10.1002/dvdy.24585

    PubMed  PubMed Central  Google Scholar 

  11. Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2(4):545–557. https://doi.org/10.1002/wdev.100

    Article  CAS  PubMed  Google Scholar 

  12. Davis TL, Rebay I (2017) Master regulators in development: views from the Drosophila retinal determination and mammalian pluripotency gene networks. Dev Biol 421(2):93–107. https://doi.org/10.1016/j.ydbio.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  13. Viets K, Eldred K, Johnston RJ Jr (2016) Mechanisms of photoreceptor patterning in vertebrates and invertebrates. Trends Genet 32(10):638–659. https://doi.org/10.1016/j.tig.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66(1):15–36. https://doi.org/10.1016/j.neuron.2010.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baker NE, Li K, Quiquand M, Ruggiero R, Wang LH (2014) Eye development. Methods 68(1):252–259. https://doi.org/10.1016/j.ymeth.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pak WL, Grossfield J, Whiten V (1969) Non-phototactic mutants in a study of vision of Drosophila. Nature 222:351–354

    CAS  PubMed  Google Scholar 

  17. Larrivee DC, Conrad SK, Stephenson RS, Pak WL (1981) Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. J Gen Physiol 78(5):521–545

    CAS  PubMed  Google Scholar 

  18. Stark WS, Sapp R (1987) Ultrastructure of the retina of Drosophila melanogaster: the mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). J Neurogenet 4(5):227–240

    CAS  PubMed  Google Scholar 

  19. Harris WA, Stark WS (1977) Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process. J Gen Physiol 69(3):261–291

    CAS  PubMed  Google Scholar 

  20. Dasgupta U, Bamba T, Chiantia S, Karim P, Tayoun AN, Yonamine I, Rawat SS, Rao RP, Nagashima K, Fukusaki E, Puri V, Dolph PJ, Schwille P, Acharya JK, Acharya U (2009) Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc Natl Acad Sci U S A 106(47):20063–20068. https://doi.org/10.1073/pnas.0911028106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chevesich J, Kreuz AJ, Montell C (1997) Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18(1):95–105

    CAS  PubMed  Google Scholar 

  22. Li C, Geng C, Leung HT, Hong YS, Strong LL, Schneuwly S, Pak WL (1999) INAF, a protein required for transient receptor potential Ca(2+) channel function. Proc Natl Acad Sci U S A 96(23):13474–13479

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pocha SM, Shevchenko A, Knust E (2011) Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 195(5):827–838

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson K, Grawe F, Grzeschik N, Knust E (2002) Drosophila Crumbs Is Required to Inhibit Light-Induced Photoreceptor Degeneration. Curr Biol 12:1675–1680

    CAS  PubMed  Google Scholar 

  25. Wang DY, Chan WM, Tam PO, Baum L, Lam DS, Chong KK, Fan BJ, Pang CP (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta 351:5–16

    CAS  PubMed  Google Scholar 

  26. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809. https://doi.org/10.1016/S0140-6736(06)69740-7

    Article  CAS  PubMed  Google Scholar 

  27. Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21(5):857–864. https://doi.org/10.1093/emboj/21.5.857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Daiger SP, Sullivan LS, Bowne SJ (2013) Genes and mutations causing retinitis pigmentosa. Clin Genet 84(2):132–141. https://doi.org/10.1111/cge.12203

    Article  CAS  PubMed  Google Scholar 

  29. Farrar GJ, Carrigan M, Dockery A, Millington-Ward S, Palfi A, Chadderton N, Humphries M, Kiang AS, Kenna PF, Humphries P (2017) Toward an elucidation of the molecular genetics of inherited retinal degenerations. Hum Mol Genet 26(R1):R2–R11. https://doi.org/10.1093/hmg/ddx185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, Sandberg MA, Berson EL (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343(6256):364–366. https://doi.org/10.1038/343364a0

    Article  CAS  PubMed  Google Scholar 

  31. Colley NJ, Cassill JA, Baker EK, Zuker CS (1995) Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration. Proc Natl Acad Sci U S A 92(7):3070–3074

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beira JV, Paro R (2016) The legacy of Drosophila imaginal discs. Chromosoma 125(4):573–592. https://doi.org/10.1007/s00412-016-0595-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roote J, Prokop A (2013) How to design a genetic mating scheme: a basic training package for Drosophila genetics. G3 (Bethesda) 3(2):353–358. https://doi.org/10.1534/g3.112.004820

    Article  Google Scholar 

  34. Greenspan RJ (2004) Fly pushing: the theory and practice of Drosophila genetics, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  35. Roberts DB (1998) Drosophila: a practical approach (Practical approach series), vol 191. IRL Press at Oxford University Press, Oxford, UK

    Google Scholar 

  36. Dahmann C (2010) Drosophila—methods and protocols (Methods in molecular biology). Humana Press Inc., Totowa, NJ

    Google Scholar 

  37. Millburn GH, Crosby MA, Gramates LS, Tweedie S, FlyBase C (2016) FlyBase portals to human disease research using Drosophila models. Dis Model Mech 9(3):245–252. https://doi.org/10.1242/dmm.023317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gramates LS, Marygold SJ, Santos GD, Urbano JM, Antonazzo G, Matthews BB, Rey AJ, Tabone CJ, Crosby MA, Emmert DB, Falls K, Goodman JL, Hu Y, Ponting L, Schroeder AJ, Strelets VB, Thurmond J, Zhou P, the FlyBase C (2017) FlyBase at 25: looking to the future. Nucleic Acids Res 45(D1):D663–D671. https://doi.org/10.1093/nar/gkw1016

    Article  CAS  PubMed  Google Scholar 

  39. St. Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 31:176–188

    Google Scholar 

  40. Venken KJ, Bellen HJ (2012) Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and PhiC31 integrase. Methods Mol Biol 859:203–228. https://doi.org/10.1007/978-1-61779-603-6_12

    Article  CAS  PubMed  Google Scholar 

  41. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18(4):455–457. https://doi.org/10.1038/74542

    Article  CAS  PubMed  Google Scholar 

  42. Winkler S, Gscheidel N, Brand M (2011) Mutant generation in vertebrate model organisms by TILLING. Methods Mol Biol 770:475–504. https://doi.org/10.1007/978-1-61779-210-6_19

    Article  CAS  PubMed  Google Scholar 

  43. Moens CB, Donn TM, Wolf-Saxon ER, Ma TP (2008) Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7(6):454–459. https://doi.org/10.1093/bfgp/eln046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Winkler S, Schwabedissen A, Backasch D, Bokel C, Seidel C, Bonisch S, Furthauer M, Kuhrs A, Cobreros L, Brand M, Gonzalez-Gaitan M (2005) Target-selected mutant screen by TILLING in Drosophila. Genome Res 15(5):718–723. https://doi.org/10.1101/gr.3721805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spannl S, Kumichel A, Hebbar S, Kapp K, Gonzalez-Gaitan M, Winkler S, Blawid R, Jessberger G, Knust E (2017) The Crumbs_C isoform of Drosophila shows tissue- and stage-specific expression and prevents light-dependent retinal degeneration. Biol Open 6(2):165–175. https://doi.org/10.1242/bio.020040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228. https://doi.org/10.1016/j.celrep.2013.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. https://doi.org/10.1534/genetics.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Port F, Chen HM, Lee T, Bullock SL (2014) Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 111(29):E2967–E2976. https://doi.org/10.1073/pnas.1405500111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu J, Ren X, Sun J, Wang X, Qiao HH, Xu BW, Liu LP, Ni JQ (2015) A toolkit of CRISPR-based genome editing systems in Drosophila. J Genet Genomics 42(4):141–149. https://doi.org/10.1016/j.jgg.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  50. Kondo S, Ueda R (2013) Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195(3):715–721. https://doi.org/10.1534/genetics.113.156737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ (2017) Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Sci China Life Sci 60(5):476–489. https://doi.org/10.1007/s11427-017-9029-9

    Article  CAS  PubMed  Google Scholar 

  53. Garen SH, Kankel DR (1983) Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. Dev Biol 96:445–466

    CAS  PubMed  Google Scholar 

  54. Becker HJ (1957) Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z indukt Abstamm u Vererbungslehre 88:333–373

    CAS  Google Scholar 

  55. Stern C (1936) Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21:625–730

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59(3):499–509

    CAS  PubMed  Google Scholar 

  57. Stowers RS, Schwarz TL (1999) A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152:1631–1639

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Newsome TP, Asling B, Dickson BJ (2000) Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127:851–860

    CAS  PubMed  Google Scholar 

  59. Lee T (2014) Generating mosaics for lineage analysis in flies. Wiley Interdiscip Rev Dev Biol 3(1):69–81. https://doi.org/10.1002/wdev.122

    Article  CAS  PubMed  Google Scholar 

  60. Griffin R, Binari R, Perrimon N (2014) Genetic odyssey to generate marked clones in Drosophila mosaics. Proc Natl Acad Sci U S A 111(13):4756–4763. https://doi.org/10.1073/pnas.1403218111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Call GB, Olson JM, Chen J, Villarasa N, Ngo KT, Yabroff AM, Cokus S, Pellegrini M, Bibikova E, Bui C, Cespedes A, Chan C, Chan S, Cheema AK, Chhabra A, Chitsazzadeh V, Do MT, Fang QA, Folick A, Goodstein GL, Huang CR, Hung T, Kim E, Kim W, Kim Y, Kohan E, Kuoy E, Kwak R, Lee E, Lee J, Lin H, Liu HC, Moroz T, Prasad T, Prashad SL, Patananan AN, Rangel A, Rosselli D, Sidhu S, Sitz D, Taber CE, Tan J, Topp K, Tran P, Tran QM, Unkovic M, Wells M, Wickland J, Yackle K, Yavari A, Zaretsky JM, Allen CM, Alli L, An J, Anwar A, Arevalo S, Ayoub D, Badal SS, Baghdanian A, Baghdanian AH, Baumann SA, Becerra VN, Chan HJ, Chang AE, Cheng XA, Chin M, Chong F, Crisostomo C, Datta S, Delosreyes A, Diep F, Ekanayake P, Engeln M, Evers E, Farshidi F, Fischer K, Formanes AJ, Gong J, Gupta R, Haas BE, Hahm V, Hsieh M, Hui JZ, Iao ML, Jin SD, Kim AY, Kim LS, King M, Knudsen-Robbins C, Kohanchi D, Kovshilovskaya B, Ku A, Kung RW, Landig ME, Latterman SS, Lauw SS, Lee DS, Lee JS, Lei KC, Leung LL, Lerner R, Lin JY, Lin K, Lim BC, Lui CP, Liu TQ, Luong V, Makshanoff J, Mei AC, Meza M, Mikhaeil YA, Moarefi M, Nguyen LH, Pai SS, Pandya M, Patel AR, Picard PD, Safaee MM, Salame C, Sanchez C, Sanchez N, Seifert CC, Shah A, Shilgevorkyan OH, Singh I, Soma V, Song JJ, Srivastava N, StaAna JL, Sun C, Tan D, Teruya AS, Tikia R, Tran T, Travis EG, Trinh JD, Vo D, Walsh T, Wong RS, Wu K, Wu YW, Yang NX, Yeranosian M, Yu JS, Zhou JJ, Zhu RX, Abrams A, Abramson A, Amado L, Anderson J, Bashour K, Beyer E, Bookatz A, Brewer S, Buu N, Calvillo S, Cao J, Chan A, Chan J, Chang A, Chang D, Chang Y, Chen Y, Choi J, Chou J, Dang P, Datta S, Davarifar A, Deravanesian A, Desai P, Fabrikant J, Farnad S, Fu K, Garcia E, Garrone N, Gasparyan S, Gayda P, Go S, Goffstein C, Gonzalez C, Guirguis M, Hassid R, Hermogeno B, Hong J, Hong A, Hovestreydt L, Hu C, Huff D, Jamshidian F, Jen J, Kahen K, Kao L, Kelley M, Kho T, Kim Y, Kim S, Kirkpatrick B, Langenbacher A, Laxamana S, Lee J, Lee C, Lee SY, Lee TS, Lee T, Lewis G, Lezcano S, Lin P, Luu T, Luu J, Marrs W, Marsh E, Marshall J, Min S, Minasian T, Minye H, Misra A, Morimoto M, Moshfegh Y, Murray J, Nguyen K, Nguyen C, Nodado E 2nd, O’Donahue A, Onugha N, Orjiakor N, Padhiar B, Paul E, Pavel-Dinu M, Pavlenko A, Paz E, Phaklides S, Pham L, Poulose P, Powell R, Pusic A, Ramola D, Regalia K, Ribbens M, Rifai B, Saakyan M, Saarikoski P, Segura M, Shadpour F, Shemmassian A, Singh R, Singh V, Skinner E, Solomin D, Soneji K, Spivey K, Stageberg E, Stavchanskiy M, Tekchandani L, Thai L, Thiyanaratnam J, Tong M, Toor A, Tovar S, Trangsrud K, Tsang WY, Uemura M, Vollmer E, Weiss E, Wood D, Wu J, Wu S, Wu W, Xu Q, Yamauchi Y, Yarosh W, Yee L, Yen G, Banerjee U (2007) Genomewide clonal analysis of lethal mutations in the Drosophila melanogaster eye: comparison of the X chromosome and autosomes. Genetics 177(2):689–697. https://doi.org/10.1534/genetics.107.077735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang Y, Xie J, Wang T (2015) A fluorescence-based genetic screen to study retinal degeneration in Drosophila. PLoS One 10(12):e0144925. https://doi.org/10.1371/journal.pone.0144925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamamoto S, Jaiswal M, Charng WL, Gambin T, Karaca E, Mirzaa G, Wiszniewski W, Sandoval H, Haelterman NA, Xiong B, Zhang K, Bayat V, David G, Li T, Chen K, Gala U, Harel T, Pehlivan D, Penney S, Vissers L, de Ligt J, Jhangiani SN, Xie Y, Tsang SH, Parman Y, Sivaci M, Battaloglu E, Muzny D, Wan YW, Liu Z, Lin-Moore AT, Clark RD, Curry CJ, Link N, Schulze KL, Boerwinkle E, Dobyns WB, Allikmets R, Gibbs RA, Chen R, Lupski JR, Wangler MF, Bellen HJ (2014) A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell 159(1):200–214. https://doi.org/10.1016/j.cell.2014.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thaker HM, Kankel DR (1992) Mosaic analysis gives an estimate of the extent of genomic involvement in the development of the visual system in Drosophila melanogaster. Genetics 131:883–894

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118(2):401–415

    CAS  PubMed  Google Scholar 

  66. den Hollander AI, Johnson K, de Kok YJM, Klebes A, Brunner HG, Knust E, Cremers FPM (2001) CRB1 has a cytoplasmic domain that is functionally conserved between human and Drosophila. Hum Mol Genet 10:2767–2773

    Google Scholar 

  67. Kang MJ, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci U S A 106(40):17043–17048. https://doi.org/10.1073/pnas.0905566106

    Article  PubMed  PubMed Central  Google Scholar 

  68. Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M (2010) Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 6(8):e1001075. https://doi.org/10.1371/journal.pgen.1001075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Elliott DA, Brand AH (2008) The GAL4 system : a versatile system for the expression of genes. Methods Mol Biol 420:79–95

    CAS  PubMed  Google Scholar 

  70. McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    CAS  PubMed  Google Scholar 

  71. McGuire SE, Deshazer M, Davis RL (2004) Gene expression systems in Drosophila: a synthesis of time and space. Trends Genet 20:384–391

    CAS  PubMed  Google Scholar 

  72. Kaya-Copur A, Schnorrer F (2016) A guide to genome-wide in vivo RNAi applications in Drosophila. Methods Mol Biol 1478:117–143. https://doi.org/10.1007/978-1-4939-6371-3_6

    Article  CAS  PubMed  Google Scholar 

  73. Zhou J, Tong C (2016) Design and methods of large-scale RNA interference screens in Drosophila. Methods Mol Biol 1470:163–169. https://doi.org/10.1007/978-1-4939-6337-9_13

    Article  CAS  PubMed  Google Scholar 

  74. Jonchere V, Bennett D (2013) Validating RNAi phenotypes in Drosophila using a synthetic RNAi-resistant transgene. PLoS One 8(8):e70489. https://doi.org/10.1371/journal.pone.0070489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Caussinus E, Affolter M (2016) deGradFP: a system to knockdown GFP-tagged proteins. Methods Mol Biol 1478:177–187. https://doi.org/10.1007/978-1-4939-6371-3_9

    Article  CAS  PubMed  Google Scholar 

  76. Morin X, Daneman R, Zavortink M, Chia W (2001) A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc Natl Acad Sci 98(26):15050–15055. https://doi.org/10.1073/pnas.261408198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kelso RJ, Buszczak M, Quinones AT, Castiblanco C, Mazzalupo S, Cooley L (2004) Flytrap, a database documenting a GFP protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res 32(Database issue):D418–D420. https://doi.org/10.1093/nar/gkh014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sarov M, Barz C, Jambor H, Hein MY, Schmied C, Suchold D, Stender B, Janosch S, KJ VV, Krishnan RT, Krishnamoorthy A, Ferreira IR, Ejsmont RK, Finkl K, Hasse S, Kampfer P, Plewka N, Vinis E, Schloissnig S, Knust E, Hartenstein V, Mann M, Ramaswami M, VijayRaghavan K, Tomancak P, Schnorrer F (2016) A genome-wide resource for the analysis of protein localisation in Drosophila. Elife 5:e12068. https://doi.org/10.7554/eLife.12068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nagarkar-Jaiswal S, Lee PT, Campbell ME, Chen K, Anguiano-Zarate S, Gutierrez MC, Busby T, Lin WW, He Y, Schulze KL, Booth BW, Evans-Holm M, Venken KJ, Levis RW, Spradling AC, Hoskins RA, Bellen HJ (2015) A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. Elife 4. https://doi.org/10.7554/eLife.05338

  80. Kaufman TC (2017) A short history and description of Drosophila melanogaster classical genetics: chromosome aberrations, forward genetic screens, and the nature of mutations. Genetics 206(2):665–689. https://doi.org/10.1534/genetics.117.199950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Economos AC, Lints FA (1984) Growth rate and life span in Drosophila. III. Effect of body size and developmental temperature on the biphasic relationship between growth rate and life span. Mech Ageing Dev 27(2):153–160

    CAS  PubMed  Google Scholar 

  82. Fast I, Hewel C, Wester L, Schumacher J, Gebert D, Zischler H, Berger C, Rosenkranz D (2017) Temperature-responsive miRNAs in Drosophila orchestrate adaptation to different ambient temperatures. RNA 23(9):1352–1364. https://doi.org/10.1261/rna.061119.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carvalho M, Schwudke D, Sampaio JL, Palm W, Riezman I, Dey G, Gupta GD, Mayor S, Riezman H, Shevchenko A, Kurzchalia TV, Eaton S (2010) Survival strategies of a sterol auxotroph. Development 137(21):3675–3685. https://doi.org/10.1242/dev.044560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stark WS, Zitzmann WG (1976) Isolation of adaptation mechanisms and photopigment spectra by Vitamin A deprivation in Drosophila. J Comp Physiol 105:15–27

    CAS  Google Scholar 

  85. Voolstra O, Oberhauser V, Sumser E, Meyer NE, Maguire ME, Huber A, von Lintig J (2010) NinaB is essential for Drosophila vision but induces retinal degeneration in opsin-deficient photoreceptors. J Biol Chem 285(3):2130–2139. https://doi.org/10.1074/jbc.M109.056101

    Article  CAS  PubMed  Google Scholar 

  86. Lee RD, Thomas CF, Marietta RG, Stark WS (1996) Vitamin a, visual pigments, and visual receptors in Drosophila. Microsc Res Tech 35(6):418–430. https://doi.org/10.1002/(SICI)1097-0029(19961215)35:6<418::AID-JEMT2>3.0.CO;2-E

    Article  CAS  PubMed  Google Scholar 

  87. von Lintig J (2012) Metabolism of carotenoids and retinoids related to vision. J Biol Chem 287(3):1627–1634. https://doi.org/10.1074/jbc.R111.303990

    Article  CAS  Google Scholar 

  88. Sapp RJ, Christianson JS, Maier L, Studer K, Stark WS (1991) Carotenoid replacement therapy in Drosophila: recovery of membrane, opsin and visual pigment. Exp Eye Res 53(1):73–79

    CAS  PubMed  Google Scholar 

  89. Chen SF, Tsai YC, Fan SS (2012) Drosophila king tubby (ktub) mediates light-induced rhodopsin endocytosis and retinal degeneration. J Biomed Sci 19:101. https://doi.org/10.1186/1423-0127-19-101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gurudev N, Yuan M, Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3(5):332–341. https://doi.org/10.1242/bio.20147310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsumoto E, Hirosawa K, Takagawa K, Hotta Y (1988) Structure of retinular cells in a Drosophila melanogaster visual mutant, rdgA, at early stages of degeneration. Cell Tissue Res 252(2):293–300

    CAS  PubMed  Google Scholar 

  92. Berson EL, Rosner B, Sandberg MA, Dryja TP (1991) Ocular findings in patients with autosomal dominant retinitis pigmentosa and a rhodopsin gene defect (Pro-23-his). Arch Ophthalmol 109(1):92–101

    CAS  PubMed  Google Scholar 

  93. Passerini I, Sodi A, Giambene B, Menchini U, Torricelli F (2007) Phenotypic intrafamilial variability associated with S212G mutation in the RDS/peripherin gene. Eur J Ophthalmol 17(6):1000–1003

    CAS  PubMed  Google Scholar 

  94. Riaz M, Baird PN (2016) Genetics in retinal diseases. Dev Ophthalmol 55:57–62. https://doi.org/10.1159/000431142

    Article  PubMed  Google Scholar 

  95. Rose AM, Bhattacharya SS (2016) Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin Genet 90(2):118–126. https://doi.org/10.1111/cge.12758

    Article  CAS  PubMed  Google Scholar 

  96. Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, Casillas S, Han Y, Magwire MM, Cridland JM, Richardson MF, Anholt RR, Barron M, Bess C, Blankenburg KP, Carbone MA, Castellano D, Chaboub L, Duncan L, Harris Z, Javaid M, Jayaseelan JC, Jhangiani SN, Jordan KW, Lara F, Lawrence F, Lee SL, Librado P, Linheiro RS, Lyman RF, Mackey AJ, Munidasa M, Muzny DM, Nazareth L, Newsham I, Perales L, Pu LL, Qu C, Ramia M, Reid JG, Rollmann SM, Rozas J, Saada N, Turlapati L, Worley KC, Wu YQ, Yamamoto A, Zhu Y, Bergman CM, Thornton KR, Mittelman D, Gibbs RA (2012) The Drosophila melanogaster genetic reference panel. Nature 482(7384):173–178. https://doi.org/10.1038/nature10811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Linford NJ, Bilgir C, Ro J, Pletcher SD (2013) Measurement of lifespan in Drosophila melanogaster. J Vis Exp 71. https://doi.org/10.3791/50068

  98. Xu Y, Wang T (2016) CULD is required for rhodopsin and TRPL channel endocytic trafficking and survival of photoreceptor cells. J Cell Sci 129(2):394–405. https://doi.org/10.1242/jcs.178764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Luan Z, Reddig K, Li HS (2014) Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration. Exp Neurol 261:791–801. https://doi.org/10.1016/j.expneurol.2014.08.025

    Article  CAS  PubMed  Google Scholar 

  100. Simon MA, Bowtell DD, Dodson GS, Laverty TR, Rubin GM (1991) Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67(4):701–716

    CAS  PubMed  Google Scholar 

  101. Dickson BJ, van der Straten A, Dominguez M, Hafen E (1996) Mutations modulating Raf signaling in Drosophila eye development. Genetics 142 (1):163-171

    Google Scholar 

  102. Rogge RD, Karlovich CA, Banerjee U (1991) Genetic dissection of a neurodevelopmental pathway: Son of sevenless functions downstream of the sevenless and EGF receptor tyrosine kinases. Cell 64(1):39–48

    CAS  PubMed  Google Scholar 

  103. Xiong B, Bellen HJ (2013) Rhodopsin homeostasis and retinal degeneration: lessons from the fly. Trends Neurosci 36(11):652–660. https://doi.org/10.1016/j.tins.2013.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hollingsworth TJ, Gross AK (2012) Defective trafficking of rhodopsin and its role in retinal degenerations. Int Rev Cell Mol Biol 293:1–44. https://doi.org/10.1016/B978-0-12-394304-0.00006-3

    Article  CAS  PubMed  Google Scholar 

  105. Chow CY, Kelsey KJ, Wolfner MF, Clark AG (2016) Candidate genetic modifiers of retinitis pigmentosa identified by exploiting natural variation in Drosophila. Hum Mol Genet 25(4):651–659. https://doi.org/10.1093/hmg/ddv502

    Article  CAS  PubMed  Google Scholar 

  106. Flaherty MS, Zavadil J, Ekas LA, Bach EA (2009) Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway. Dev Dyn 238(9):2235–2253. https://doi.org/10.1002/dvdy.21989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Potier D, Davie K, Hulselmans G, Naval Sanchez M, Haagen L, Huynh-Thu VA, Koldere D, Celik A, Geurts P, Christiaens V, Aerts S (2014) Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference. Cell Rep 9(6):2290–2303. https://doi.org/10.1016/j.celrep.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  108. Carvalho M, Sampaio JL, Palm W, Brankatschk M, Eaton S, Shevchenko A (2012) Effects of diet and development on the Drosophila lipidome. Mol Syst Biol 8:600. https://doi.org/10.1038/msb.2012.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guan XL, Cestra G, Shui G, Kuhrs A, Schittenhelm RB, Hafen E, van der Goot FG, Robinett CC, Gatti M, Gonzalez-Gaitan M, Wenk MR (2013) Biochemical membrane lipidomics during Drosophila development. Dev Cell 24(1):98–111. https://doi.org/10.1016/j.devcel.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  110. Cox JE, Thummel CS, Tennessen JM (2017) Metabolomic studies in Drosophila. Genetics 206(3):1169–1185. https://doi.org/10.1534/genetics.117.200014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Omenn GS (2017) The proteomes of the human eye, a highly compartmentalized organ. Proteomics 17(1–2). https://doi.org/10.1002/pmic.201600340

    Google Scholar 

  112. Hoffman DR, Uauy R, Birch DG (1995) Metabolism of omega-3 fatty acids in patients with autosomal dominant retinitis pigmentosa. Exp Eye Res 60(3):279–289

    CAS  PubMed  Google Scholar 

  113. Hoffman DR, DeMar JC, Heird WC, Birch DG, Anderson RE (2001) Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa. J Lipid Res 42(9):1395–1401

    CAS  PubMed  Google Scholar 

  114. Schaefer EJ, Robins SJ, Patton GM, Sandberg MA, Weigel-DiFranco CA, Rosner B, Berson EL (1995) Red blood cell membrane phosphatidylethanolamine fatty acid content in various forms of retinitis pigmentosa. J Lipid Res 36(7):1427–1433

    CAS  PubMed  Google Scholar 

  115. Wenk MR (2010) Lipidomics: new tools and applications. Cell 143(6):888–895. https://doi.org/10.1016/j.cell.2010.11.033

    Article  CAS  PubMed  Google Scholar 

  116. Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11(8):593–598. https://doi.org/10.1038/nrm2934

    Article  CAS  PubMed  Google Scholar 

  117. Xu H, Lee SJ, Suzuki E, Dugan KD, Stoddard A, Li HS, Chodosh LA, Montell C (2004) A lysosomal tetraspanin associated with retinal degeneration identified via a genome-wide screen. EMBO J 23(4):811–822. https://doi.org/10.1038/sj.emboj.7600112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nirala NK, Rahman M, Walls SM, Singh A, Zhu LJ, Bamba T, Fukusaki E, Srideshikan SM, Harris GL, Ip YT, Bodmer R, Acharya UR (2013) Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis. PLoS Genet 9(6):e1003556. https://doi.org/10.1371/journal.pgen.1003556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Griciuc A, Roux MJ, Merl J, Giangrande A, Hauck SM, Aron L, Ueffing M (2014) Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration. J Neurosci 34(8):2797–2812. https://doi.org/10.1523/JNEUROSCI.2982-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nichols R, Pak WL (1985) Characterization of Drosophila melanogaster rhodopsin. J Biol Chem 260:12670–12674

    CAS  PubMed  Google Scholar 

  121. Steele F, O'Tousa JE (1990) Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant. Neuron 4:883–890

    CAS  PubMed  Google Scholar 

  122. Alloway PG, Howard L, Dolph PJ (2000) The formation of stable rhodopsin-arrestin complexes induces apoptosis and photoreceptor cell degeneration. Neuron 28:129–138

    CAS  PubMed  Google Scholar 

  123. Berger S, Bulgakova NA, Grawe F, Johnson K, Knust E (2007) Unravelling the genetic complexity of Drosophila stardust during photoreceptor morphogenesis and prevention of light-induced degeneration. Genetics 176:2189–2200

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Bachmann A, Grawe F, Johnson K, Knust E (2008) Drosophila Lin-7 is a component of the crumbs complex in epithelia and photoreceptor cells and prevents light-induced retinal degeneration. Eur J Cell Biol 87:123–136

    CAS  PubMed  Google Scholar 

  125. Chinchore Y, Mitra A, Dolph PJ (2009) Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration. PLoS Genet 5(2):e1000377. https://doi.org/10.1371/journal.pgen.1000377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Jaiswal M, Haelterman NA, Sandoval H, Xiong B, Donti T, Kalsotra A, Yamamoto S, Cooper TA, Graham BH, Bellen HJ (2015) Impaired mitochondrial energy production causes light-induced photoreceptor degeneration independent of oxidative stress. PLoS Biol 13(7):e1002197. https://doi.org/10.1371/journal.pbio.1002197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Isoldi MC, Rollag MD, Castrucci AM, Provencio I (2005) Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc Natl Acad Sci U S A 102(4):1217–1221. https://doi.org/10.1073/pnas.0409252102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Leinonen R, Diez FG, Binns D, Fleischmann W, Lopez R, Apweiler R (2004) UniProt archive. Bioinformatics 20(17):3236–3237. https://doi.org/10.1093/bioinformatics/bth191

    Article  CAS  PubMed  Google Scholar 

  129. Leonard DS, Bowman VD, Ready DF, Pak WL (1992) Degeneration of photoreceptors in rhodopsin mutants of Drosophila. J Neurobiol 23(6):605–626. https://doi.org/10.1002/neu.480230602

    Article  CAS  PubMed  Google Scholar 

  130. Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A 108(34):14198–14203. https://doi.org/10.1073/pnas.1111704108

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kumar JP, Ready DF (1995) Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121:4359–4370

    CAS  PubMed  Google Scholar 

  132. Kramer JM, Staveley BE (2003) GAL4 causes developmental defects and apoptosis when expressed in the developing eye of Drosophila melanogaster. Genet Mol Res 2(1):43–47

    CAS  PubMed  Google Scholar 

  133. Hay BA, Wolff T, Rubin GM (1994) Expression of baculovirus P35 prevents cell death in Drosophila. Development 120(8):2121–2129

    CAS  PubMed  Google Scholar 

  134. Luo L, Liao YJ, Jan LY, Jan YN (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8(15):1787–1802

    CAS  PubMed  Google Scholar 

  135. Yao KM, White K (1994) Neural specificity of elav expression: defining a Drosophila promoter for directing expression to the nervous system. J Neurochem 63(1):41–51

    CAS  PubMed  Google Scholar 

  136. Hazelett DJ, Bourouis M, Walldorf U, Treisman JE (1998) decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125(18):3741–3751

    CAS  PubMed  Google Scholar 

  137. McDonald EC, Xie B, Workman M, Charlton-Perkins M, Terrell DA, Reischl J, Wimmer EA, Gebelein BA, Cook TA (2010) Separable transcriptional regulatory domains within Otd control photoreceptor terminal differentiation events. Dev Biol 347(1):122–132. https://doi.org/10.1016/j.ydbio.2010.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Knust Lab for fruitful and constant discussions and Julia Eichhorn for help with Fig. 1. Work in the authors’ lab was supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elisabeth Knust or Sarita Hebbar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Lehmann, M., Knust, E., Hebbar, S. (2019). Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa. In: Weber, B.H.F., Langmann, T. (eds) Retinal Degeneration. Methods in Molecular Biology, vol 1834. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8669-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8669-9_16

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8668-2

  • Online ISBN: 978-1-4939-8669-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics