Skip to main content

Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1813))

Abstract

ADP-ribosylation is a covalent posttranslational modification of proteins that is catalyzed by various types of ADP-ribosyltransferase (ART) enzymes, including members of the poly(ADP-ribose) polymerase (PARP) family. ADP-ribose (ADPR) modifications can occur as mono(ADP-ribosyl)ation, oligo(ADP-ribosyl)ation, or poly(ADP-ribosyl)ation, depending on the particular ART enzyme catalyzing the reaction, as well as the specific reaction conditions. Understanding the biology of ADP-ribosylation requires facile and robust means of generating and detecting the modification in all of its forms. Here we describe how to generate protein-linked mono(ADP-ribose), oligo(ADP-ribose), and poly(ADP-ribose) (MAR, OAR, and PAR, respectively) in vitro as an automodification of PARPs 1 or 3. First, epitope-tagged PARP-1 (a PARP polyenzyme) and PARP-3 (a PARP monoenzyme) are expressed individually in insect cells using baculovirus expression vectors, and purified using immunoaffinity chromatography. Second, the purified recombinant PARPs are incubated individually in the presence of different concentrations of NAD+ (as a donor of ADPR groups) and sheared DNA (to activate their catalytic activities) resulting in various forms of auto-ADP-ribosylation. Third, the products are confirmed using ADPR detection reagents that can distinguish among MAR, OAR, and PAR. Finally, if desired, the OAR and PAR can be deproteinized. The protein-linked and free MAR, OAR, and PAR generated in these reactions can be used as standards, substrates, or binding partners in a variety of ADPR-related assays.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Change history

  • 18 June 2019

    William Lee Kraus’s name was incorrectly published in Pubmed. It has now been corrected to read: Kraus WL.

References

  1. Bonfiglio JJ, Fontana P, Zhang Q et al (2017) Serine ADP-ribosylation depends on HPF1. Mol Cell 65:932–940 e936

    Article  CAS  Google Scholar 

  2. Gibson BA, Kraus WL (2012) New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424

    Article  CAS  Google Scholar 

  3. Laing S, Unger M, Koch-Nolte F et al (2011) ADP-ribosylation of arginine. Amino Acids 41:257–269

    Article  CAS  Google Scholar 

  4. Schreiber V, Dantzer F, Ame JC et al (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517–528

    Article  CAS  Google Scholar 

  5. Deng Q, Barbieri JT (2008) Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288

    Article  CAS  Google Scholar 

  6. Simon NC, Aktories K, Barbieri JT (2014) Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol 12:599–611

    Article  CAS  Google Scholar 

  7. Glowacki G, Braren R, Firner K et al (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 11:1657–1670

    Article  CAS  Google Scholar 

  8. Hawse WF, Wolberger C (2009) Structure-based mechanism of ADP-ribosylation by sirtuins. J Biol Chem 284:33654–33661

    Article  CAS  Google Scholar 

  9. Rack JG, Morra R, Barkauskaite E et al (2015) Identification of a class of protein ADP-Ribosylating sirtuins in microbial pathogens. Mol Cell 59:309–320

    Article  CAS  Google Scholar 

  10. Van Meter M, Mao Z, Gorbunova V et al (2011) Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging (Albany NY) 3:829–835

    Article  Google Scholar 

  11. Ame JC, Spenlehauer C, De Murcia G (2004) The PARP superfamily. BioEssays 26:882–893

    Article  CAS  Google Scholar 

  12. Hottiger MO (2016) SnapShot: ADP-ribosylation signaling. Mol Cell 62:472

    Article  CAS  Google Scholar 

  13. Vyas S, Matic I, Uchima L et al (2014) Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat Commun 5:4426

    Article  CAS  Google Scholar 

  14. Kiehlbauch CC, Aboul-Ela N, Jacobson EL et al (1993) High resolution fractionation and characterization of ADP-ribose polymers. Anal Biochem 208:26–34

    Article  CAS  Google Scholar 

  15. Gupte R, Liu Z, Kraus WL (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101–126

    Article  CAS  Google Scholar 

  16. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26:417–432

    Article  Google Scholar 

  17. Ryu KW, Kim DS, Kraus WL (2015) New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115:2453–2481

    Article  CAS  Google Scholar 

  18. Barkauskaite E, Jankevicius G, Ladurner AG et al (2013) The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280:3491–3507

    Article  CAS  Google Scholar 

  19. Fontana P, Bonfiglio JJ, Palazzo L et al (2017) Serine ADP-ribosylation reversal by the hydrolase ARH3. elife 6

    Google Scholar 

  20. Teloni F, Altmeyer M (2016) Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 44:993–1006

    Article  CAS  Google Scholar 

  21. Karras GI, Kustatscher G, Buhecha HR et al (2005) The macro domain is an ADP-ribose binding module. EMBO J 24:1911–1920

    Article  CAS  Google Scholar 

  22. Kustatscher G, Hothorn M, Pugieux C et al (2005) Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12:624–625

    Article  CAS  Google Scholar 

  23. Timinszky G, Till S, Hassa PO et al (2009) A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol 16:923–929

    Article  CAS  Google Scholar 

  24. Kang HC, Lee YI, Shin JH et al (2011) Iduna is a poly(ADP-ribose) (PAR)-dependent E3 ubiquitin ligase that regulates DNA damage. Proc Natl Acad Sci U S A 108:14103–14108

    Article  CAS  Google Scholar 

  25. Wang Z, Michaud GA, Cheng Z et al (2012) Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26:235–240

    Article  Google Scholar 

  26. Zhang Y, Liu S, Mickanin C et al (2011) RNF146 is a poly(ADP-ribose)-directed E3 ligase that regulates axin degradation and Wnt signalling. Nat Cell Biol 13:623–629

    Article  CAS  Google Scholar 

  27. Aguilera Gomez A, Van Oorschot MM, Veenendaal T et al (2016) In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. elife 5:e21475

    Article  Google Scholar 

  28. Bartolomei G, Leutert M, Manzo M et al (2016) Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. Mol Cell 61:474–485

    Article  CAS  Google Scholar 

  29. Gibson BA, Zhang Y, Jiang H et al (2016) Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353:45–50

    Article  CAS  Google Scholar 

  30. Luo X, Ryu KW, Kim DS et al (2017) PARP-1 controls the adipogenic transcriptional program by PARylating C/EBPβ and modulating its transcriptional activity. Mol Cell 65:260–271

    Article  CAS  Google Scholar 

  31. Martello R, Leutert M, Jungmichel S et al (2016) Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue. Nat Commun 7:12917

    Article  CAS  Google Scholar 

  32. Murawska M, Hassler M, Renkawitz-Pohl R et al (2011) Stress-induced PARP activation mediates recruitment of Drosophila Mi-2 to promote heat shock gene expression. PLoS Genet 7:e1002206

    Article  CAS  Google Scholar 

  33. Griesenbeck J, Oei SL, Mayer-Kuckuk P et al (1997) Protein-protein interaction of the human poly(ADP-ribosyl)transferase depends on the functional state of the enzyme. Biochemistry 36:7297–7304

    Article  CAS  Google Scholar 

  34. Haince JF, Poirier GG, Kirkland JB (2004) Nonisotopic methods for determination of poly(ADP-ribose) levels and detection of poly(ADP-ribose) polymerase. Curr Protoc Cell Biol Chapter 18:Unit 18.17

    Google Scholar 

  35. Malanga M, Bachmann S, Panzeter PL et al (1995) Poly(ADP-ribose) quantification at the femtomole level in mammalian cells. Anal Biochem 228:245–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The PARP-related research in the Kraus lab is supported by grants from the National Institutes of Health, NIDDK (DK069710), the Cancer Prevention and Research Institute of Texas (CPRIT) (RP160319), and the Cecil H. and Ida Green Center for Reproductive Biology Sciences Endowments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Lee Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lin, K.Y., Huang, D., Kraus, W.L. (2018). Generating Protein-Linked and Protein-Free Mono-, Oligo-, and Poly(ADP-Ribose) In Vitro. In: Chang, P. (eds) ADP-ribosylation and NAD+ Utilizing Enzymes. Methods in Molecular Biology, vol 1813. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8588-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8588-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8587-6

  • Online ISBN: 978-1-4939-8588-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics