Skip to main content

Cellular Models: HD Patient-Derived Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.

Charlene Geater and Sarah Hernandez are co-first authors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References 

  1. The Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971

    Article  Google Scholar 

  2. Myers RH (2004) Huntington’s disease genetics. NeuroRx 1:255

    Article  PubMed  PubMed Central  Google Scholar 

  3. Duyao M, Ambrose C, Myers R et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4:387

    Article  PubMed  CAS  Google Scholar 

  4. Bird ED, Caro AJ, Pilling JB (1974) A sex related factor in the inheritance of Huntington’s chorea. Ann Hum Genet 37:255

    Article  PubMed  CAS  Google Scholar 

  5. Myers RH, Sax DS, Schoenfeld M et al (1985) Late onset of Huntington’s disease. J Neurol Neurosurg Psychiatry 48:530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Trottier Y, Biancalana V, Mandel J-L (1994) Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet 31:377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length. Nat Genet 4:398–403

    Article  PubMed  CAS  Google Scholar 

  8. Wexler NS, Lorimer J, Porter J et al (2004) Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci U S A 101:3498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gusella J, MacDonald M (2002) No post-genetics era in human disease research. Nat Rev Genet 3:72

    Article  PubMed  CAS  Google Scholar 

  10. Graveland G, Williams R, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227:770

    Article  PubMed  CAS  Google Scholar 

  11. Kemp JM, Powell T (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262:383

    Article  PubMed  CAS  Google Scholar 

  12. Yager L, Garcia A, Wunsch A et al (2015) The ins and outs of the striatum: role in drug addiction. Neuroscience 301:529

    Article  PubMed  CAS  Google Scholar 

  13. Vonsattel J-P, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559

    Article  PubMed  CAS  Google Scholar 

  14. Nasir J, Floresco SB, O’Kusky JR et al (1995) Targeted disruption of the Huntington’s disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 81:811

    Article  PubMed  CAS  Google Scholar 

  15. Dragatsis I, Levine MS, Zeitlin S (2000) Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat Genet 26:300

    Article  PubMed  CAS  Google Scholar 

  16. Duyao MP, Auerbach AB, Ryan A et al (1995) Inactivation of the mouse Huntington’s disease gene homolog Hdh. Science 269:407

    Article  PubMed  CAS  Google Scholar 

  17. Zeitlin S, Liu J-P, Chapman DL et al (1995) Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington’s disease gene homologue. Nat Genet 11:155

    Article  PubMed  CAS  Google Scholar 

  18. Saudou F, Humbert S (2016) The biology of Huntingtin. Neuron 89:910

    Article  PubMed  CAS  Google Scholar 

  19. Zheng Z, Diamond MI (2012) Huntington disease and the huntingtin protein. Prog Mol Biol Transl Sci 107:189

    Article  PubMed  CAS  Google Scholar 

  20. Bennett EJ, Shaler TA, Woodman B et al (2007) Global changes to the ubiquitin system in Huntington’s disease. Nature 448:704

    Article  PubMed  CAS  Google Scholar 

  21. Ochaba J, Lukacsovich T, Csikos G et al (2014) Potential function for the Huntingtin protein as a scaffold for selective autophagy. Proc Natl Acad Sci U S A 111:16889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Cuervo AM, Zhang S (2015) Selective autophagy and Huntingtin: learning from disease. Cell Cycle 14:1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zheng S, Clabough EB, Sarkar S et al (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 6:e1000838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zuccato C, Ciammola A, Rigamonti D et al (2001) Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science 293:493

    Article  PubMed  CAS  Google Scholar 

  25. Zuccato C, Cattaneo E (2014) Huntington’s disease. Handb Exp Pharmacol 220:357

    Article  PubMed  CAS  Google Scholar 

  26. Zhao X, Chen XQ, Han E, Hu Y, Paik P, Ding Z, Overman J, Lau AL, Shahmoradian SH, Chiu W, Thompson LM, Wu C, Mobley WC (2016) TRiC subunits enhance BDNF axonal transport and rescue striatal atrophy in Huntington’s disease. Proc Natl Acad Sci U S A 113:38

    Google Scholar 

  27. Rigamonti D, Bauer JH, De-Fraja C et al (2000) Wild-type huntingtin protects from apoptosis upstream of caspase-3. J Neurosci 20:3705

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Ho LW, Brown R, Maxwell M et al (2001) Wild type Huntingtin reduces the cellular toxicity of mutant Huntingtin in mammalian cell models of Huntington’s disease. J Med Genet 38:450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Leavitt BR, van Raamsdonk JM, Shehadeh J et al (2006) Wild-type huntingtin protects neurons from excitotoxicity. J Neurochem 96:1121

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, Leavitt BR, van Raamsdonk JM et al (2006) Huntingtin inhibits caspase-3 activation. EMBO J 25:5896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ona VO, Li M, Vonsattel JPG et al (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature 399:263

    Article  PubMed  CAS  Google Scholar 

  32. Gafni J, Ellerby LM (2002) Calpain activation in Huntington’s disease. J Neurosci 22:4842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Sanchez I, Xu C-J, Juo P et al (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623

    Article  PubMed  CAS  Google Scholar 

  34. Cisbani G, Cicchetti F (2012) An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 3:e382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gauthier LR, Charrin BC, Borrell-Pagès M et al (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127

    Article  PubMed  CAS  Google Scholar 

  36. Liot G, Zala D, Pla P et al (2013) Mutant Huntingtin alters retrograde transport of TrkB receptors in striatal dendrites. J Neurosci 33:6298

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Hu S, Zhao MT, Jahanbani F et al (2016) Effects of cellular origin on differentiation of human induced pluripotent stem cell-derived endothelial cells. JCI Insight 1. pii: e85558

    Google Scholar 

  38. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145

    Article  CAS  PubMed  Google Scholar 

  39. Verlinsky Y, Strelchenko N, Kukharenko V et al (2005) Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 10:105

    Article  PubMed  CAS  Google Scholar 

  40. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861

    Article  PubMed  CAS  Google Scholar 

  42. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917

    Article  CAS  PubMed  Google Scholar 

  43. Fusaki N, Ban H, Nishiyama A et al (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stadtfeld M, Nagaya M, Utikal J et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920

    Article  PubMed  CAS  Google Scholar 

  46. Okita K, Hong H, Takahashi K et al (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 5:418

    Article  PubMed  CAS  Google Scholar 

  47. Anokye-Danso F, Trivedi CM, Juhr D et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Zhou H, Wu S, Joo JY et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381

    Article  PubMed  CAS  Google Scholar 

  49. Huangfu D, Osafune K, Maehr R et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269

    Article  PubMed  CAS  Google Scholar 

  50. Cahan P, Daley GQ (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 14:357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lister R, Pelizzola M, Kida YS et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mertens J, Marchetto MC, Bardy C et al (2016) Evaluating cell reprogramming, differentiation and conversion technologies in neuroscience. Nat Rev Neurosci 17:424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Trounson A, DeWitt ND (2016) Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol 17:194

    Article  PubMed  CAS  Google Scholar 

  54. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154

    Article  PubMed  CAS  Google Scholar 

  55. Ouimet CC, Miller PE, Hemmings HC et al (1984) DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions: III. Immunocytochemical localization. J Neurosci 4:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ivkovic S, Ehrlich ME (1999) Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 19:5409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ivkovic S, Polonskaia O, Fariñas I et al (1997) Brain-derived neurotrophic factor regulates maturation of the DARPP-32 phenotype in striatal medium spiny neurons: studies in vivo and in vitro. Neuroscience 79:509

    Article  PubMed  CAS  Google Scholar 

  58. El-Akabawy G, Medina LM, Jeffries A et al (2011) Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway. Stem Cells Dev 20:1873

    Article  PubMed  CAS  Google Scholar 

  59. Aubry L, Bugi A, Lefort N et al (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:e16707

    Article  Google Scholar 

  60. Jeon I, Lee N, Li JY et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30:2054

    Article  PubMed  CAS  Google Scholar 

  61. Joannides AJ, Fiore-Heriche C, Battersby AA et al (2007) A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells 25:731

    Article  PubMed  CAS  Google Scholar 

  62. Danjo T, Eiraku M, Muguruma K et al (2011) Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci 31:1919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhang N, An MC, Montoro D et al (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2:RRN1193

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma L, Hu B, Liu Y et al (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10:455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Delli Carri A, Onorati M, Lelos MJ et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140:301

    Article  PubMed  CAS  Google Scholar 

  66. Delli Carri A, Onorati M, Castiglioni V et al (2013) Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev 9:461

    Article  CAS  Google Scholar 

  67. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Arber C, Precious SV, Cambray S et al (2015) Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142:1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nekrasov ED, Vigont VA, Klyushnikov SA et al (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol Neurodegener 11:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Arlotta P, Molyneaux BJ, Jabaudon D et al (2008) Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 28:622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. The HD iPSC Consortium (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264

    Article  CAS  Google Scholar 

  72. Shin E, Palmer MJ, Li M et al (2012) GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington’s disease. Stem Cell Rev 8:513

    Article  CAS  Google Scholar 

  73. Tapscott SJ, Davis RL, Thayer MJ et al (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242:405

    Article  PubMed  CAS  Google Scholar 

  74. Berninger B, Costa MR, Koch U et al (2007) Functional properties of neurons derived from in vitro reprogrammed postnatal astroglia. J Neurosci 27:8654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Heinrich C, Blum R, Gascón S et al (2010) Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 8:e1000373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhang Y, Pak C, Han Y et al (2013) Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78:785

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pfisterer U, Wood J, Nihlberg K et al (2011) Efficient induction of functional neurons from adult human fibroblasts. Cell Cycle 10:3311

    Article  PubMed  CAS  Google Scholar 

  79. Pang ZP, Yang N, Vierbuchen T et al (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Davila J, Chanda S, Ang CE et al (2013) Acute reduction in oxygen tension enhances the induction of neurons from human fibroblasts. J Neurosci Methods 216:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yoo AS, Sun AX, Li L et al (2011) MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476:228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Victor MB, Richner M, TO H et al (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84:311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Faedo A, Laporta A, Segnali A et al (2017) Differentiation of human telencephalic progenitor cells into MSNs by inducible expression of Gsx2 and Ebf1. Proc Natl Acad Sci U S A 114:1234

    Article  CAS  Google Scholar 

  84. Mattis VB, Tom C, Akimov S et al (2015) HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 24(11):3257–3271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Camnasio S, Delli Carri A, Lombardo A et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46:41

    Article  PubMed  CAS  Google Scholar 

  87. Mateizel I, De Temmerman N, Ullmann U et al (2006) Derivation of human embryonic stem cell lines from embryos obtained after IVF and after PGD for monogenic disorders. Hum Reprod 21:503

    Article  PubMed  CAS  Google Scholar 

  88. Niclis JC, Trounson A, Dottori M et al (2009) Human embryonic stem cell models of Huntington disease. Reprod Biomed Online 19:106

    Article  PubMed  CAS  Google Scholar 

  89. Jacquet L, Neueder A, Földes G et al (2015) Three Huntington’s disease specific mutation-carrying human embryonic stem cell lines have stable number of CAG repeats upon in vitro differentiation into cardiomyocytes. PLoS One 10:e0126860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bradley CK, Scott HA, Chami O et al (2010) Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev 20:495

    Article  PubMed  CAS  Google Scholar 

  91. Dumevska B, McKernan R, Goel D et al (2016) Derivation of Huntington disease affected Genea017 human embryonic stem cell line. Stem Cell Res 16:493

    Article  PubMed  CAS  Google Scholar 

  92. Dumevska B, Main H, McKernan R et al (2016) Derivation of Huntington disease affected Genea018 human embryonic stem cell line. Stem Cell Res 16:423

    Article  PubMed  CAS  Google Scholar 

  93. Dumevska B, Peura T, McKernan R et al (2016) Derivation of Huntington disease affected Genea020 human embryonic stem cell line. Stem Cell Res 16:430

    Article  PubMed  CAS  Google Scholar 

  94. Dumevska B, Chami O, McKernan R et al (2016) Derivation of Huntington disease affected Genea046 human embryonic stem cell line. Stem Cell Res 16:446

    Article  PubMed  CAS  Google Scholar 

  95. Dumevska B, McKernan R, Hu J et al (2016) Derivation of Huntington disease affected Genea089 human embryonic stem cell line. Stem Cell Res 16:434

    Article  PubMed  CAS  Google Scholar 

  96. Dumevska B, Schaft J, McKernan R et al (2016) Derivation of Huntington disease affected Genea090 human embryonic stem cell line. Stem Cell Res 16:519

    Article  PubMed  CAS  Google Scholar 

  97. Dumevska B, Schaft J, McKernan R et al (2016) Derivation of Huntington disease affected Genea091 human embryonic stem cell line. Stem Cell Res 16:449

    Article  PubMed  CAS  Google Scholar 

  98. Swami M, Hendricks AE, Gillis T et al (2009) Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum Mol Genet 18:3039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Greenamyre JT, Penney JB, Young AB et al (1985) Alterations in l-glutamate binding in Alzheimer’s and Huntington’s diseases. Science 227:1496

    Article  PubMed  CAS  Google Scholar 

  100. Bezprozvanny I, Hayden MR (2004) Deranged neuronal calcium signaling and Huntington disease. Biochem Biophys Res Commun 322:1310

    Article  PubMed  CAS  Google Scholar 

  101. Cepeda C, Itri JN, Flores-Hernández J et al (2001) Differential sensitivity of medium-and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 14:1577

    Article  PubMed  CAS  Google Scholar 

  102. Laforet GA, Sapp E, Chase K et al (2001) Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J Neurosci 21:9412

    Article  Google Scholar 

  103. Zeron MM, Fernandes HB, Krebs C et al (2004) Potentiation of NMDA receptor-mediated excitotoxicity linked with intrinsic apoptotic pathway in YAC transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 25:469

    Article  PubMed  CAS  Google Scholar 

  104. Drouet V, Perrin V, Hassig R et al (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann Neurol 65:276

    Article  PubMed  CAS  Google Scholar 

  105. Seriola A, Spits C, Simard JP et al (2011) Huntington’s and myotonic dystrophy hESCs: down-regulated trinucleotide repeat instability and mismatch repair machinery expression upon differentiation. Hum Mol Genet 20:176

    Article  CAS  PubMed  Google Scholar 

  106. An MC, Zhang N, Scott G et al (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Chae JI, Kim DW, Lee N et al (2012) Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington’s disease patient. Biochem J 446:359

    Article  PubMed  CAS  Google Scholar 

  108. Khakh BS, Sofroniew MV (2014) Astrocytes and Huntington’s disease. ACS Chem Neurosci 5:494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. McQuade LR, Balachandran A, Scott HA et al (2014) Proteomics of Huntington’s disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances. J Proteome Res 13:5648

    Article  PubMed  CAS  Google Scholar 

  110. Garitaonandia I, Amir H, Boscolo FS et al (2015) Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 10:e0118307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Scherzinger E, Lurz R, Turmaine M et al (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549

    Article  PubMed  CAS  Google Scholar 

  112. Feyeux M, Bourgois-Rocha F, Redfern A et al (2012) Early transcriptional changes linked to naturally occurring Huntington’s disease mutations in neural derivatives of human embryonic stem cells. Hum Mol Genet 21:3883

    Article  PubMed  CAS  Google Scholar 

  113. Ring KL, An MC, Zhang N et al (2015) Genomic analysis reveals disruption of striatal neuronal development and therapeutic targets in human Huntington’s disease neural stem cells. Stem Cell Reports 5:1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Puri MC, Nagy A (2012) Concise review: Embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30:10

    Article  PubMed  CAS  Google Scholar 

  115. Narsinh KH, Plews J, Wu JC (2011) Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther 19:635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Polo JM, Liu S, Figueroa ME et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Urbach A, Benvenisty N (2009) Studying early lethality of 45,XO (Turner’s syndrome) embryos using human embryonic stem cells. PLoS One 4:e4175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Panopoulos AD, Ruiz S, Izpisua Belmonte JC (2011) iPSCs: induced back to controversy. Cell Stem Cell 8:347

    Article  PubMed  CAS  Google Scholar 

  120. Yusa K, Rad R, Takeda J et al (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Tachibana M, Amato P, Sparman M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A 38:455

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513

    Article  PubMed  CAS  Google Scholar 

  125. Mattis VB, Svendsen CN (2017) Modeling Huntington′s disease with patient-derived neurons. Brain Res 1656:76–87

    Article  PubMed  CAS  Google Scholar 

  126. Gore A, Li Z, Fung HL et al (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Jiang W, Bikard D, Cox D et al (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. An MC, O’Brien RN, Zhang N et al (2014) Polyglutamine disease modeling: epitope based screen for homologous recombination using CRISPR/Cas9 system. PLoS Curr 6. https://doi.org/10.1371/currents.hd.0242d2e7ad72225efa72f6964589369a

  131. Ruzo A, Croft GF, Metzger JJ, Galgoczi S, Gerber LJ, Pellegrini C, Wang H Jr, Fenner M, Tse S, Marks A, Nchako C, Brivanlou AH (2018) Chromosomal instability during neurogenesis in Huntington’s disease. Development 145:2

    Article  PubMed  CAS  Google Scholar 

  132. Lee JM, Ramos EM, Lee JH et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Boulting GL, Kiskinis E, Croft GF et al (2011) A functionally characterized test set of human induced pluripotent stem cells. Nat Biotechnol 29:279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Hu B-Y, Weick JP, Yu J et al (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335

    Article  PubMed  PubMed Central  Google Scholar 

  135. Naphade S, Embusch A, Madushani KL, Ring KL, Ellerby LM (2018) Altered expression of matrix metalloproteinases and their endogenous inhibitors in a human isogenic stem cell model of Huntington’s disease. Front Neurosci 11:736

    Article  PubMed  PubMed Central  Google Scholar 

  136. Juopperi TA, Kim WR, Chiang CH et al (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Niclis JC, Pinar A, Haynes JM et al (2013) Characterization of forebrain neurons derived from late-onset Huntington’s disease human embryonic stem cell lines. Front Cell Neurosci 7:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Nguyen GD, Gokhan S, Molero AE et al (2013) Selective roles of normal and mutant huntingtin in neural induction and early neurogenesis. PLoS One 8:e64368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Conforti P, Besusso D, Bocchi VD, Faedo A, Cesana E, Rossetti G, Ranzani V, Svendsen CN, Thompson LM, Toselli M, Biella G, Pagani M, Cattaneo E (2018) Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A. 115:4

    Article  CAS  Google Scholar 

  140. Jackson M, Gentleman S, Lennox G et al (1995) The cortical neuritic pathology of Huntington’s disease. Neuropathol Appl Neurobiol 21:18

    Article  PubMed  CAS  Google Scholar 

  141. Mihm MJ, Amann DM, Schanbacher BL et al (2007) Cardiac dysfunction in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis 25:297

    Article  PubMed  CAS  Google Scholar 

  142. van der Burg JM, Winqvist A, Aziz NA et al (2011) Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis 44:1

    Article  PubMed  Google Scholar 

  143. Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836

    Article  PubMed  CAS  Google Scholar 

  144. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105

    Article  PubMed  CAS  Google Scholar 

  145. Mummery CL, Zhang J, Ng ES et al (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Egger G, Liang G, Aparicio A et al (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457

    Article  PubMed  CAS  Google Scholar 

  147. Bar-Nur O, Caspi I, Benvenisty N (2012) Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. J Mol Cell Biol 4:180

    Article  PubMed  CAS  Google Scholar 

  148. Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B, Davidson BL, Yang XW, Yoo AS (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. https://doi.org/10.1038/s41593-018-0075-7

  149. Davis GC, Williams AC, Markey SP et al (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249

    Article  PubMed  CAS  Google Scholar 

  150. Langston JW, Ballard P, Tetrud JW et al (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979

    Article  PubMed  CAS  Google Scholar 

  151. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:1262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Shin JW, Kim KH, Chao MJ et al (2016) Permanent inactivation of Huntington’s disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 25(20):4566–4576

    PubMed  PubMed Central  CAS  Google Scholar 

  153. Raab S, Klingenstein M, Liebau S et al (2014) A comparative view on human somatic cell sources for iPSC generation. Stem Cells Int 2014:768391

    Article  PubMed  PubMed Central  Google Scholar 

  154. Sareen D, Saghizadeh M, Ornelas L et al (2014) Differentiation of human limbal-derived induced pluripotent stem cells into limbal-like epithelium. Stem Cells Transl Med 3:1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Hill KA, Buettner VL, Halangoda A et al (2004) Spontaneous mutation in Big Blue mice from fetus to old age: tissue-specific time courses of mutation frequency but similar mutation types. Environ Mol Mutagen 43:110

    Article  PubMed  CAS  Google Scholar 

  156. Hoang ML, Kinde I, Tomasetti C et al (2016) Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc Natl Acad Sci U S A 113:9846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. El Hokayem J, Cukier HN, Dykxhoorn DM (2016) Blood derived induced pluripotent stem cells (iPSCs): benefits, challenges and the road ahead. J Alzheimers Dis Parkinsonism 6. https://doi.org/10.4172/2161-0460.1000275

  158. Kang E, Wang X, Tippner-Hedges R et al (2016) Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18:625

    Article  PubMed  CAS  Google Scholar 

  159. Abulencia A, Acosta D, Adelman J et al (2006) Direct search for Dirac magnetic monopoles in pp collisions at square root s = 1.96 TeV. Phys Rev Lett 96:201801

    Article  PubMed  CAS  Google Scholar 

  160. Seo H, Sonntag KC, Isacson O (2004) Generalized brain and skin proteasome inhibition in Huntington’s disease. Ann Neurol 56:319

    Article  PubMed  CAS  Google Scholar 

  161. Varani K, Abbracchio MP, Cannella M et al (2003) Aberrant A2A receptor function in peripheral blood cells in Huntington’s disease. FASEB J 17:2148

    Article  PubMed  CAS  Google Scholar 

  162. Precious SV, Kelly CM, Reddington AE et al (2016) FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation. Exp Neurol 282:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Straccia M, Carrere J, Rosser AE et al (2016) Human t-DARPP is induced during striatal development. Neuroscience 333:320

    Article  PubMed  CAS  Google Scholar 

  164. Mayshar Y, Ben-David U, Lavon N et al (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7:521

    Article  PubMed  CAS  Google Scholar 

  165. Taapken SM, Nisler BS, Newton MA et al (2011) Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells. Nat Biotechnol 29:313

    Article  PubMed  CAS  Google Scholar 

  166. Närvä E, Autio R, Rahkonen N et al (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol 28:371

    Article  PubMed  CAS  Google Scholar 

  167. Amps K, Andrews PW, Anyfantis G et al (2011) Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol 29:1132

    Article  PubMed  CAS  Google Scholar 

  168. Maitra A, Arking DE, Shivapurkar N et al (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37:1099

    Article  PubMed  CAS  Google Scholar 

  169. Müller FJ, Schuldt BM, Williams R et al (2011) A bioinformatic assay for pluripotency in human cells. Nat Methods 8:315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Hochedlinger K, Yamada Y, Beard C et al (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465

    Article  PubMed  CAS  Google Scholar 

  171. Park ET, Gum JR, Kakar S et al (2008) Aberrant expression of SOX2 upregulates MUC5AC gastric foveolar mucin in mucinous cancers of the colorectum and related lesions. Int J Cancer 122:1253

    Article  PubMed  CAS  Google Scholar 

  172. Ghaleb AM, Nandan MO, Chanchevalap S et al (2005) Krüppel-like factors 4 and 5: the yin and yang regulators of cellular proliferation. Cell Res 15:92

    Article  PubMed  CAS  Google Scholar 

  173. Kuttler F, Mai S (2006) c-Myc, genomic instability and disease. Genome Dyn 1:171

    Article  PubMed  CAS  Google Scholar 

  174. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313

    Article  PubMed  CAS  Google Scholar 

  175. Seki T, Yuasa S, Oda M et al (2010) Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 7:11

    Article  PubMed  CAS  Google Scholar 

  176. Yu J, Hu K, Smuga-Otto K et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Mangiarini L, Sathasivam K, Mahal A et al (1997) Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation. Nat Genet 15:197

    Article  PubMed  CAS  Google Scholar 

  178. Gonitel R, Moffitt H, Sathasivam K et al (2008) DNA instability in postmitotic neurons. Proc Natl Acad Sci U S A 105:3467

    Article  PubMed  PubMed Central  Google Scholar 

  179. Shelbourne PF, Keller-McGandy C, Bi WL et al (2007) Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum Mol Genet 16:1133

    Article  CAS  PubMed  Google Scholar 

  180. Jonson I, Ougland R, Klungland A et al (2013) Oxidative stress causes DNA triplet expansion in Huntington’s disease mouse embryonic stem cells. Stem Cell Res 11:1264

    Article  CAS  PubMed  Google Scholar 

  181. Osafune K, Caron L, Borowiak M et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313

    Article  PubMed  CAS  Google Scholar 

  182. Miller JD, Ganat YM, Kishinevsky S et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13:691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Nopoulos PC, Aylward EH, Ross CA et al (2011) Smaller intracranial volume in prodromal Huntington’s disease: evidence for abnormal neurodevelopment. Brain 134:137

    Article  PubMed  Google Scholar 

  184. Blockx I, De Groof G, Verhoye M et al (2012) Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage 59:957

    Article  PubMed  Google Scholar 

  185. Molero AE, Arteaga-Bracho EE, Chen CH et al (2016) Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci U S A 113:5736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Guo X, Disatnik MH, Monbureau M et al (2013) Inhibition of mitochondrial fragmentation diminishes Huntington’s disease-associated neurodegeneration. J Clin Invest 123:5371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Lu XH, Mattis VB, Wang N et al (2014) Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington’s disease. Sci Transl Med 6:268ra178

    Article  CAS  PubMed  Google Scholar 

  188. Charbord J, Poydenot P, Bonnefond C et al (2013) High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes. Stem Cells 31:1816

    Article  PubMed  CAS  Google Scholar 

  189. Orqueda AJ, Giménez CA, Pereyra-Bonnet F (2016) iPSCs: a minireview from bench to bed, including organoids and the CRISPR system. Stem Cells Int 2016:5934782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Ehrnhoefer DE, Butland SL, Pouladi MA et al (2009) Mouse models of Huntington disease: variations on a theme. Dis Model Mech 2:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Lippmann ES, Azarin SM, Kay JE et al (2012) Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat Biotechnol 30:783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Qian T, Maguire SE, Canfield SG, Bao X, Olson WR, Shusta EV, Palecek SP (2017) Directed differentiation of human pluripotent stem cells to blood-brain barrier endothelial cells. Sci Adv. 3:11

    Article  Google Scholar 

  193. Chandrasekaran A, Avci HX, Leist M et al (2016) Astrocyte differentiation of human pluripotent stem cells: new tools for neurological disorder research. Front Cell Neurosci 10:215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Rosas HD, Doros G, Bhasin S et al (2015) A systems-level “misunderstanding”: the plasma metabolome in Huntington’s disease. Ann Clin Transl Neurol 2:756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Liot G, Valette J, Pépin J et al (2016) Energy defects in Huntington’s disease: why “in vivo” evidence matters. Biochem Biophys Res Commun 483(4):1084–1095

    Article  PubMed  CAS  Google Scholar 

  196. Umbach JA, Adams KL, Gundersen CB et al (2012) Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons. PLoS One 7:e36049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH (2017) Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21:3

    Article  CAS  Google Scholar 

  198. Darbinyan A, Pozniak P, Darbinian N et al (2013) Compartmentalized neuronal cultures. Methods Mol Biol 1078:147

    Article  PubMed  PubMed Central  Google Scholar 

  199. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760

    Article  PubMed  CAS  Google Scholar 

  200. Weick JP, Johnson MA, Skroch SP et al (2010) Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28:2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Lancaster MA, Renner M, Martin CA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373

    Article  PubMed  CAS  Google Scholar 

  202. Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246

    Article  PubMed  CAS  Google Scholar 

  203. Paşca AM, Sloan SA, Clarke LE et al (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12:671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Crotti A, Benner C, Kerman BE et al (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Huang B, Wei W, Wang G et al (2015) Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron 85:1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Mertens J, Paquola AC, Ku M et al (2015) Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17(6):705–718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Huh CJ, Zhang B, Victor MB et al (2016) Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. Elife 5. https://doi.org/10.7554/eLife.18648

  208. Bran S, Murray WA, Hirsch IB et al (1995) Long QT syndrome during high-dose cisapride. Arch Intern Med 155:765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Charlene Geater and Sarah Hernandez contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia B. Mattis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geater, C., Hernandez, S., Thompson, L., Mattis, V.B. (2018). Cellular Models: HD Patient-Derived Pluripotent Stem Cells. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics