Skip to main content

Murine Models of Huntington’s Disease for Evaluating Therapeutics

  • Protocol
  • First Online:
Huntington’s Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1780))

Abstract

Huntington’s disease (HD) is an autosomal dominant progressive neurological disorder characterized by motor, cognitive, and psychiatric symptoms that typically present later on in life, although juvenile cases do exist. The identification of the disease-causing mutation, a CAG triplet repeat expansion in the HTT gene, in 1993 generated numerous investigations into the cellular and molecular pathways underlying the disorder. HD mouse models have played a prominent role in these studies, and the use of these mouse models of HD in the development and evaluation of novel therapeutic strategies is reviewed in this chapter. As new interventions and therapeutic approaches are evaluated and implemented, genetic mouse models will continue to be used with the hope of developing effective treatments for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pringsheim T, Wiltshire K, Day L et al (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27:1083–1091

    Article  PubMed  Google Scholar 

  2. Rawlins MD, Wexler NS, Wexler AR et al (2016) The prevalence of Huntington’s disease. Neuroepidemiology 46(2):144–153

    Article  PubMed  Google Scholar 

  3. Fisher ER, Hayden MR (2014) Multisource ascertainment of Huntington’s disease in Canada: prevalence and population at risk. Mov Disord 29(1):105–114

    Article  PubMed  Google Scholar 

  4. Gusella JF, Wexler NS, Conneally PM et al (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306(5940):234–238

    Article  CAS  PubMed  Google Scholar 

  5. Anon et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 72(6):971–983

    Article  Google Scholar 

  6. Gama Sosa MA, De Gasperi R, Elder GA (2012) Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 131(4):535–563

    Article  PubMed  Google Scholar 

  7. Wagner LA, Menalled L, Goumeniouk A et al (2008) Chapter 6: Huntington’s disease. In MacArthur, RA and Borsini F (eds.): Animal and Translational Models for CNS Drug Discovery: Neurological Disorders pp 207–266

    Chapter  Google Scholar 

  8. Harper B (2005) Huntington disease (online). Available from: https://doi.org/10.1258/jrsm.98.12.550

    Article  PubMed  PubMed Central  Google Scholar 

  9. Young AB, Shoulson I, Penney JB et al (1986) Huntington’s disease in Venezuela: neurologic features and functional decline. Neurology 36(2):244–249

    Article  CAS  PubMed  Google Scholar 

  10. Nance MA, Myers RH (2001) Juvenile onset Huntington’s disease: clinical and research perspectives. Ment Retard Dev Disabil Res Rev 7(3):153–157

    Article  CAS  PubMed  Google Scholar 

  11. Butters N, Wolfe J, Martone M et al (1985) Memory disorders associated with Huntington’s disease: verbal recall, verbal recognition and procedural memory. Neuropsychologia 23(6):729–743

    Article  CAS  PubMed  Google Scholar 

  12. Zakzanis KK (1998) The subcortical dementia of Huntington’s disease. J Clin Exp Neuropsychol 20(4):565–578

    Article  CAS  PubMed  Google Scholar 

  13. Anderson KE, Marder KS (2001) An overview of psychiatric symptoms in Huntington’s disease. Curr Psychiatry Rep 3(5):379–388

    Article  CAS  PubMed  Google Scholar 

  14. Lovestone S, Hodgson S, Sham P et al (1996) Familial psychiatric presentation of Huntington’s disease. J Med Genet 33(2):128–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sanberg PR, Fibiger HC, Mark RF et al (1981) Body weight and dietary factors in Huntington’s disease patients compared with matched controls. Med J Aust 1(8):407–409

    PubMed  CAS  Google Scholar 

  16. Morton AJ, Wood NI, Hastings MH et al (2005) Disintegration of the sleep-wake cycle and circadian timing in Huntington’s disease. J Neurosci 25(1):157–163

    Article  CAS  PubMed  Google Scholar 

  17. Van Raamsdonk JM, Murphy Z, Selva DM et al (2007) Testicular degeneration in Huntington disease. Neurobiol Dis 26(3):512–520

    Article  CAS  PubMed  Google Scholar 

  18. Sharp AH, Loev SJ, Schilling G et al (1995) Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron 14(5):1065–1074

    Article  CAS  PubMed  Google Scholar 

  19. Andrew SE, Goldberg YP, Kremer B et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403

    Article  CAS  PubMed  Google Scholar 

  20. Mahadevan M, Tsilfidis C, Sabourin L et al (1992) Mytonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 225(5049):1235–1255

    Google Scholar 

  21. Semaka A, Creighton S, Warby S, Hayden MR et al (2006) Predictive testing for Huntingons disease: interpretation and significance of intermediate alleles. Clin Genet 70(4):283–294

    Article  CAS  PubMed  Google Scholar 

  22. Telenius H, Kremer HP, Theilmann J et al (1993) Molecular analysis of juvenile Huntington’s disease: the major influence on (CAG)n repeat length is the sex of the affected parent. Hum Mol Genet 2(10):1535–1540

    Article  CAS  PubMed  Google Scholar 

  23. Becanovic K, Norremolle A, Neal SJ et al (2015) A SNP in the HTT promoter alters NF-kB binding and is a bidirectional genetic modifier of Huntington’s disease. Nat Neurosci 18(6):807–816

    Article  CAS  PubMed  Google Scholar 

  24. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium (2015) Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162(3):516–526

    Article  CAS  Google Scholar 

  25. Vonsattel JP, DiFiglia M (1998) Huntington’s disease. J Neuropathol Exp Neurol 57(5):369–384

    Article  CAS  PubMed  Google Scholar 

  26. Vonsattel JP, Myers RH, Stevens TJ et al (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44(6):559–577

    Article  CAS  PubMed  Google Scholar 

  27. Davies SW, Turmaine M, Cozens BA et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90(3):537–548

    Article  CAS  PubMed  Google Scholar 

  28. DiFiglia M, Sapp E, Chase KO et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neuritis in brain. Science 277(5334):1990–1993

    Article  CAS  PubMed  Google Scholar 

  29. Coyle JT, Schwarcz R (1976) Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea. Nature 263(5574):244–246

    Article  CAS  PubMed  Google Scholar 

  30. Beal MF, Ferrante RJ, Swartz KJ, Kowall NW (1991) Chronic quinolinic acid lesions in rats closely resemble Huntingtons-disease. J Neurosci 11(6):1649–1659

    Article  CAS  PubMed  Google Scholar 

  31. Ludolph AC, He F, Spencer PS et al (1991) 3-Nitropropionic acid – exogenous animal neurotoxin and possible human striatal toxin. Can J Neurol Sci 18(4):492–498

    Article  CAS  PubMed  Google Scholar 

  32. Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87(3):493–506

    Article  CAS  PubMed  Google Scholar 

  33. Carter RJ, Lione LA, Humby T et al (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19(8):3248–3257

    Article  CAS  PubMed  Google Scholar 

  34. Li JY, Popovic N, Brundin P et al (2005) The use of the R6 transgenic mouse models of Huntington’s disease in attempts to develop novel therapeutic strategies. NeuroRx 2(3):447–464

    Article  PubMed  PubMed Central  Google Scholar 

  35. Schilling G, Becher MW, Sharp AH et al (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expressing a mutant N-terminal fragment of huntingtin. Hum Mol Genet 8(3):397–407

    Article  CAS  PubMed  Google Scholar 

  36. Luthi-Carter R, Strand A, Peters NL et al (2000) Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 9(9):1259–1271

    Article  CAS  PubMed  Google Scholar 

  37. Andreassen OA, Dedeoglu A, Ferrante RJ et al (2001) Creatine increase survival and delays motor symptoms in transgenic animal model of Huntington’s disease. Neurobiol Dis 8(3):479–491

    Article  CAS  PubMed  Google Scholar 

  38. Andreassen OA, Ferrante RJ, Huang HM et al (2001) Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease. Ann Neurol 50(1):112–117

    Article  CAS  PubMed  Google Scholar 

  39. Andreassen OA, Ferrante RJ, Dedeoglu A, Beal MF et al (2001) Lipoic acid improves survival in transgenic mouse models of Huntington’s disease. Neuroreport 12(15):3371–3373

    Article  CAS  PubMed  Google Scholar 

  40. Schilling G, Coonfield ML, Ross CA, Borchelt DR et al (2001) Coenzyme Q1 and remacemide hydrochloride ameloriate motor deficits in Huntington’s disease transgenic mouse model. Neurosci Lett 315(3):149–153

    Article  CAS  PubMed  Google Scholar 

  41. Slow EJ, Graham RK, Osmand AP et al (2005) Absence of behavioral abnormalities and neurodegeneration in vivo despite widespread neuronal huntingtin inclusions. Proc Natl Acad Sci U S A 102(32):11402–11407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reddy PH, Charles V, Williams M et al (1999) Transgenic mice expressing mutated full-length HD cDNA: a paradigm for locomotor changes and selective neuronal loss in Huntington’s disease. Philos Trans R Soc Lond Ser B Biol Sci 354(1386):1035–1045

    Article  CAS  Google Scholar 

  43. Tanaka Y, Igarashi S, Nakamura M et al (2006) Progressive phenotype and nuclear accumulation of an amino-terminal cleavage fragment in a transgenic mouse model with inducible expression of full-length mutant huntingtin. Neurobiol Dis 21(2):381–391

    Article  CAS  PubMed  Google Scholar 

  44. Hodgson JG, Agopyan N, Gutekunst CA et al (1999) A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23(1):181–192

    Article  CAS  PubMed  Google Scholar 

  45. Slow EJ, van Raamsdonk J, Rogers D et al (2003) Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease. Hum Mol Genet 12(13):1555–1567

    Article  CAS  PubMed  Google Scholar 

  46. Van Raamsdonk JM, Pearson J, Slow EJ et al (2005) Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington’s disease. J Neurosci 25(16):4169–4180. https://doi.org/10.1523/JNEUROSCI.0590-05.2005

    Article  PubMed  CAS  Google Scholar 

  47. Gray M, Shirasaki DI, Cepeda C et al (2008) Full-length human mutant huntingtin with a stable polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. J Neurosci 28(24):6182–6195. https://doi.org/10.1523/JNEUROSCI.0857-08.2008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Barnes GT, Duyao MP, Ambrose CM et al (1994) Mouse Huntingtons-disease gene homology (Hdh). Somat Cell Mol Genet 20(2):87–94

    Article  CAS  PubMed  Google Scholar 

  49. White JK, Auerbach W, Duyao MP et al (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17(4):404–410

    Article  CAS  PubMed  Google Scholar 

  50. Levine MS, Klapstein GJ, Koppel A et al (1999) Enhanced sensitivity to N-methyl-d-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 58(4):515–532

    Article  CAS  PubMed  Google Scholar 

  51. Lin CH, Tallaksen-Greene S, Chien WM et al (2001) Neurological abnormalities in a knock-in mouse model of Huntington’s disease. Hum Mol Genet 10(2):137–144

    Article  CAS  PubMed  Google Scholar 

  52. Shelbourne PF, Killeen N, Hevner RF et al (1999) A Huntington’s disease CAG expansion at the murine Hdh locus is unstable and associated with behavioural abnormalities in mice. Hum Mol Genet 8(5):763–774

    Article  CAS  PubMed  Google Scholar 

  53. Wheeler VC, White JK, Gutekunst CA et al (2000) Long glutamine tracts cause nuclear localization of a novel form of huntingtin in medium spiny striatal neurons in Hdh(Q92) and Hdh(Q111) knock-in mice. Hum Mol Genet 9(4):503–513

    Article  CAS  PubMed  Google Scholar 

  54. Menalled LB, Sison JD, Dragatsis I et al (2003) Time course of early motor and neuropathological anomalies in a knock-in mouse model of Huntington’s disease with 140 CAG repeats. J Comp Neurol 465(1):11–26

    Article  CAS  PubMed  Google Scholar 

  55. Heng MY, Duong DK, Albin RL et al (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19(19):3702–3720. https://doi.org/10.1093/hmg/ddq285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Heng MY, Detloff PJ, Paulson HL, Albin RL (2010) Early alterations of autophagy in Huntington disease-like mice. Autophagy 6(8):1206–1208

    Article  PubMed  PubMed Central  Google Scholar 

  57. Squitieri F, Gellera C, Cannella M et al (2003) Homozygosity for CAG mutation in Huntington disease is associated with more severe clinical course. Brain 126:946–955

    Article  PubMed  Google Scholar 

  58. Menalled LB, Kudwa AE, Miller S et al (2012) Comprehensive behavioral and molecular characterization of a new knock-in mouse model of Huntington’s disease: zQ175. PLoS One 12(7):e49838. https://doi.org/10.1371/journal.pone.0049838. [Epub 2012 Dec 20]

    Article  CAS  Google Scholar 

  59. Southwell AL, Smith-Dijak A, Kay C et al (2016) An enhanced Q175 knock-in mouse model of Huntington disease with higher mutant huntingtin levels and accelerated disease phenotypes. Hum Mol Genet. Jul 4. pii: ddw212 [Epub ahead of print]

    Google Scholar 

  60. Gaveriaux-Ruff C, Kieffer B (2007) Conditional gene targeting in the mouse nervous system: insights into brain function and diseases. Pharmacol Ther 113:619–634

    Article  CAS  PubMed  Google Scholar 

  61. Mazarei G, Leavitt BR (2014) Murine models of HD. In: Movement disorders: genetics and models, 2nd edn. Elsevier, Amsterdam, pp 533–546

    Google Scholar 

  62. Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101(1):57–66

    Article  CAS  PubMed  Google Scholar 

  63. Furth PA, St Onge L, Boger H et al (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91(20):9302–9306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Díaz-Hernández M, Torres-Peraza J, Salvatori-Abarca A et al (2005) Full motor recovery despite striatal neuron loss and formation of irreversible amyloid-like inclusions in a conditional mouse model of Huntington’s disease. J Neurosci 25(42):9773–9781

    Article  CAS  PubMed  Google Scholar 

  65. Bradford J, Shin JY, Roberts M et al (2009) Expression of mutant huntingtin in mouse brain astrocytes causes age-dependent neurological symptoms. Proc Natl Acad Sci U S A 106(52):22480–22485. https://doi.org/10.1073/pnas.0911503106

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bradford J, Shin JY, Roberts M et al (2010) Mutant huntingtin in glial cells exacerbates neurological symptoms of Huntington disease mice. J Biol Chem 285(14):10653–10661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Faideau M, Kim J, Cormier K et al (2010) In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects. Hum Mol Genet 19(15):3053–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Molero AE, Arteaga-Bracho EE, Chen CH et al (2016) Selective expression of mutant huntingtin during development recapitulates characteristic features of Huntington’s disease. Proc Natl Acad Sci U S A 113(20):5736–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Southwell AL, Warby SC, Carroll JB et al (2013) A fully humanized transgenic mouse model of Huntington disease. Hum Mol Genet 22(1):18–34

    Article  CAS  PubMed  Google Scholar 

  70. Kolodziejczyk K, Parsons MP, Southwell AL et al (2014) Striatal synaptic dysfunction and hippocampal plasticity deficits in the Hu97/18 mouse model of Huntington disease. PLoS One 9(4):e94562. https://doi.org/10.1371/journal.pone.0094562. eCollection 2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Menalled L, Lutz C, Ramboz S et al (2014) A field guide to working with mouse models of Huntington’s disease. http://chdifoundation.org/a-field-guide-to-working-with-mouse-models-of-huntingtons-disease/

  72. Weller A, Leguisamo AC, Towns L et al (2003) Maternal effects in infant and adult phenotypes of 5HT1A and 5HT1B receptor knockout mice. Dev Psychobiol 42:194–205

    Article  PubMed  Google Scholar 

  73. Brunner D, Buhot MC, Hen R, Hofer M (1999) Anxiety, motor activation and maternal infant interactions in 5HT1B knockout mice. Behav Neurosci 113(3):587–601

    Article  CAS  PubMed  Google Scholar 

  74. Hockly E, Cordery PM, Woodman B et al (2002) Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol 51(2):235–242

    Article  PubMed  Google Scholar 

  75. Farley SJ, McKay BM, Disterhoft JF, Weiss C (2011) Reevaluating hippocampus dependent learning in FVB/N mice. Behav Neurosci 125(6):871–878

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schauwecker PE (2005) Susceptibility to excitotoxic and metabolic striatal neurodegeneration in the mouse is genotype dependent. Brain Res 1040:112–120

    Article  CAS  PubMed  Google Scholar 

  77. Van Raamsdonk JM, Metzler M, Slow E et al (2007) Phenotypic abnormalities in the YAC128 mouse model of Huntington’s disease are penetrant on multiple genetic backgrounds and modulated by strain. Neurobiol Dis 26:189–200

    Article  CAS  PubMed  Google Scholar 

  78. Orvoen S, Pla P, Gardier AM, Saudou F, David DJ (2012) Huntington’s disease knock-in male mice show specific anxiety-like behavior and altered neuronal maturation. Neurosci Lett 507:127–132

    Article  CAS  PubMed  Google Scholar 

  79. Aziz NA, van der Burg JM, Landwehrmeyer GB, Brunding P, Stijnen T, EHDI Study Group, Roos RA (2008) Weight loss in Huntington’s disease increases with higher CAG repeat number. Neurology 71(19):1506–1513. https://doi.org/10.1212/01.wnl.0000334276.09729.0e

    Article  PubMed  CAS  Google Scholar 

  80. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury. J Neurotrauma 11(2):187–196

    Article  CAS  PubMed  Google Scholar 

  81. Pallier PN, Drew CK, Morton AJ (2009) The detection and measurement of locomotor deficits in a transgenic mouse model of Huntington’s disease are task-and-protocol dependent: influence of non-motor factors on locomotor function. Brain Res Bull 78:347–355

    Article  PubMed  Google Scholar 

  82. Hockly E (2003) Standardization and statistical approaches to therapeutic trials in the R6/2 mouse. Brain Res Bull 61:469–479

    Article  PubMed  Google Scholar 

  83. Hickey MA, Gallant K, Gross GG, Levine MS, Chesselet MF (2005) Early behavioral deficits in R6/2 mice suitable for use in preclinical drug testing. Neurobiol Dis 20(1):1–11

    Article  CAS  PubMed  Google Scholar 

  84. Craufurd D, Snowden J (2002) Neuropsychological and neuropsychiatric aspects of Huntington’s disease. In: Bates G, Harper PS, Jones L (eds) Huntington's disease, 3rd edn. Oxford University Press, Oxford, pp 62–94

    Google Scholar 

  85. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  86. Block F, Kunkel M, Schwarz M (1993) Quinolinic acid lesion of the striatum induces impairment in spatial learning and motor performance in rats. Neurosci Lett 149(2):126–128

    Article  CAS  PubMed  Google Scholar 

  87. Abada YS, Schreiber R, Ellebroek B (2013) Motor, emotional and cognitive deficits in adult BACHD mice: a model for Huntington’s disease. Behav Brain Res 238:243–251

    Article  PubMed  Google Scholar 

  88. File SE, Mahal A, Mangiarini L, Bates GP (1998) Striking changes in anxiety in Huntington’s disease transgenic mice. Brain Res 805:234–240

    Article  CAS  PubMed  Google Scholar 

  89. Baldo B, Paganetti P, Grueninger S et al (2012) TR-FRET-based duplex immunoassay reveals an inverse correlation of soluble and aggregated mutant huntingtin in Huntington’s disease. Chem Biol 19:264–275

    Article  CAS  PubMed  Google Scholar 

  90. Sathasivam K, Lane A, Legleiter J et al (2010) Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington’s disease. Hum Mol Genet 19:65–78

    Article  CAS  PubMed  Google Scholar 

  91. Weiss WF, Hodgdon TK, Kaler EW, Lenhoff AM, Roberts CJ et al (2007) Nonnative protein polymers: structure, morphology, and relation to nucleation and growth. Biophys J 93:4392–4403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bayram-Weston Z, Jones L, Dunnet SB, Brooks SP (2016) Comparison of mHTT antibodies in Huntington’s disease mouse models reveal specific binding profiles and steady state ubiquitin levels with disease development. PLoS One 11(15):e0155834. https://doi.org/10.1371/journal.pone.0155834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Labadorf A, Hoss AG, Lagomarsino V et al (2015) RNA sequence analysis of human Huntington disease brain reveals an extensive increase in inflammatory and developmental gene expression. PLoS One 11(7):e0160295. https://doi.org/10.1371/journal.pone.0160295

    Article  CAS  Google Scholar 

  94. Miller JRC, Lo KK, Andre R et al (2016) RNA-Seq of Huntington’s disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Hum Mol Genet 25(14):2893–2904. https://doi.org/10.1093/hmg/ddw142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Carroll JB, Lerch JP, Franicosi S et al (2011) Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease. Neurobiol Dis 43:257–265

    Article  CAS  PubMed  Google Scholar 

  96. Heikkinen T, Lehtimaki K, Vartiainen N et al (2012) Characterization of neurophysiological and behavioral changes, MRI brain volumetry and 1H MRS in zQ175 knock-in mouse model of Huntington’s disease. PLoS One 7:e50717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hickey MA, Kosmalska A, Enayati J et al (2008) Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience 157:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brunner D, Balci F, Ludvig EA (2012) Comparative psychology and the grand challenge of drug discovery in psychiatry and neurodegeneration. Behav Process 89:187–195

    Article  Google Scholar 

  99. Menalled LM, Brunner D (2014) Animal models of Huntington’s disease for translation to the clinic: best practices. Mov Disord 15(29):1375–1390. https://doi.org/10.1002/mds.26006

    Article  Google Scholar 

  100. Wild E, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord 29(11):1434–1445. https://doi.org/10.1002/mds.26007

    Article  PubMed  CAS  Google Scholar 

  101. Pavon-Agustin C, Mielcarek M, Canut-Garriga M, Isalan M (2016) Deimmunization for gene therapy: host matching of synthetic zinc finger constructs enables long-term mutant Huntingtin repression in mice. Mol Neurodegener 11(1):64. https://doi.org/10.1186/s13024-016-0128-x

    Article  CAS  Google Scholar 

  102. Garriga-Canut M, Agustin-Pavon C, Herrmann F et al (2012) Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc Natl Acad Sci U S A 109(45):E3136–E3145. https://doi.org/10.1073/pnas.1206506109

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dalston NA, Gonzalez-Barriga A, Kourkouta E et al (2017) The expanded CAG repeat in the huntingtin gene as a target for therapeutic RNA modulation throughout the HD mouse brain. PLoS One 12(2):e0171127. https://doi.org/10.1371/journal.pone.0171127

    Article  CAS  Google Scholar 

  104. Rue L, Coronel-Banez M, Muncunil-Creus J et al (2016) Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independently of huntingtin levels. J Clin Invest 126(11):4319–4330. https://doi.org/10.1172/JCI83185

    Article  PubMed  PubMed Central  Google Scholar 

  105. Monteys AM, Ebanks SA, Kesier MS, Davidson BL (2017) CRISPR/Cas9 editing of the mutant huntingtin allele in vitro and in vivo. Mol Ther 25(1):12–23. https://doi.org/10.1016/j-ymthe.2016.11.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Kratter IH, Zahed H, Lau A et al (2016) Serine 421 regulates huntingtin toxicity and clearance in mice. J Clin Invest 126(9):3585–3597. https://doi.org/10.1172/JCI80339

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ochaba J, Monteys AM, O’Rourke JG et al (2016) PIAS1 regulates mutant huntingtin accumulation and Huntington’s disease-associated phenotypes in vivo. Neuron 90(3):507–520. https://doi.org/10.1016/j.neuron.2016.03.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Lee JH, Tecedor L, Chen YH et al (2015) Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotype. Neuron 85(2):303–315. https://doi.org/10.1016/j.neuron.2014.12.019

    Article  PubMed  CAS  Google Scholar 

  109. Chopra V, Quinti L, Khanna P et al (2016) LBH589, a hydroxamic acid-derived HDAC inhibitor is neuroprotective in mouse models of Huntington’s disease. J Huntingtons Dis 5(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Squitieri F, Di Pardo A, Favellato M, Amico E, Maglione V, Frati L (2015) Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J Cell Mol Med 19(11):2540–2548. https://doi.org/10.1111/jcmm.12604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Geva M, Kusko R, Soares H et al (2016) Pridopidine activates neuroprotective pathways impaired in Huntington’s disease. Hum Mol Genet 25(18):3975–3987. https://doi.org/10.1093/hmg/ddw238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M, Bezprozvanny I (2017) The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington’s disease. Neurobiol Dis 97(Pt A):46–59. https://doi.org/10.1016/j.nbd.2016.10.006

    Article  PubMed  CAS  Google Scholar 

  113. Corey-Bloom J, Jia H, Aikin AM, Thomas EA (2014) Disease modifying potential of glatiramer acetate in Huntington’s disease. J Huntingtons Dis 3(3):311–316. https://doi.org/10.3233/JHD-140110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Imamura T, Fujita K, Tagawa K et al (2016) Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro-in vivo-integrated screens of chemical libraries. Sci Rep 6:33861. https://doi.org/10.1038/srep33861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Garcia-Miralles M, Hong X, Tan JL et al (2016) Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioral improvements in the YAC128 model of Huntington’s disease. Sci Rep 6:31652. https://doi.org/10.1038/srep31652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Munoz E, Sagredo O (2015) Neuroprotective properties of cannabigerol in Huntington’s disease: studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics 12(1):185–199. https://doi.org/10.1007/s133-014-0304-z

    Article  PubMed  CAS  Google Scholar 

  117. Diaz-Alonso J, Paraiso-Luna J, Navarrete C et al (2016) VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington’s disease. Sci Rep 6:29789. https://doi.org/10.1038/srep29789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Wright DJ, Renoir T, Smith ZM et al (2015) N-Acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry 5:e492. https://doi.org/10.1038/tp.2014.131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blair R. Leavitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kosior, N., Leavitt, B.R. (2018). Murine Models of Huntington’s Disease for Evaluating Therapeutics. In: Precious, S., Rosser, A., Dunnett, S. (eds) Huntington’s Disease. Methods in Molecular Biology, vol 1780. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7825-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7825-0_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7824-3

  • Online ISBN: 978-1-4939-7825-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics