Skip to main content

Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1772))

Abstract

Several CRISPR/Cas9 tools have been recently established for precise genome editing in a wide range of filamentous fungi. This genome editing platform offers high flexibility in target selection and the possibility of introducing genetic deletions without the introduction of transgenic sequences . This chapter describes an approach for the transformation of Penicillium chrysogenum protoplasts with preassembled ribonucleoprotein particles (RNPs) consisting of purified Cas9 protein and in vitro transcribed single guide RNA (sgRNA) for the deletion of genome sequences or their replacement with alternative sequences. This method is potentially transferable to all fungal strains where protoplasts can be obtained from.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.fgsc.net/

References

  1. Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deng H, Gao R, Liao X, Cai Y (2017) Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol 168(7):664–672

    Article  CAS  PubMed  Google Scholar 

  3. Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38(4):637–642

    Article  CAS  PubMed  Google Scholar 

  4. Fuller KK, Chen S, Loros JJ, Dunlap C (2015) Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell 14(11):1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weyda I, Yang L, Vang J, Ahring BK (2017) A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 135:26–34

    Article  CAS  PubMed  Google Scholar 

  6. Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygård Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5(7):754–764

    Article  CAS  PubMed  Google Scholar 

  7. Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous fungi. PLoS One 10(7):e0133085

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wenderoth M, Pinecker C, Voß B, Fischer R (2017) Establishment of CRISPR/Cas9 in Alternaria alternate. Fungal Genet Biol 101:55–60

    Article  CAS  PubMed  Google Scholar 

  9. Qin H, Xiao H, Zou G, Zhou Z, Zhong J (2017) CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem 56:57–61

    Article  CAS  Google Scholar 

  10. Sugano SS, Suzuki H, Shimokita E, Chiba H, Noji S (2017) Genome editing in the mushroom- forming basidiomycete Coprinopsis cinerea, optimized by a high- throughput transformation system. Sci Rep 7(1):1260

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schuster M, Schweizer G, Reissmann S, Kahmann R (2016) Genome editing in Ustilago maydis using the CRISPR-Cas system. Fungal Genet Biol 89:3–9

    Article  CAS  PubMed  Google Scholar 

  12. Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10(1):1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu R, Chen L, Jiang Y, Zhou Z, Zou G (2015) Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov 1:15007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang Y, Tyler BM (2016) Technical advance efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Lai Y, Wang L, Zhai S, Zou G, Zhou Z, Cui C (2017) CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci Rep 7:45763

    Article  PubMed Central  Google Scholar 

  16. Arazoef T, Miyoshi K, Yamato T, Ogawa T, Ohsato S, Arie T, Kuwata S (2015) Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnol Bioeng 112(12):2543–2549

    Article  Google Scholar 

  17. Kovalchuk A, Weber SS, Nijland JG, Bovenberg RA, Driessen AJ (2012) Fungal ABC transporter deletion and localization analysis. In: Bolton TB (ed) Plant fungal pathogens: methods and protocols. Humana Press, Totowa, NJ, pp 1–16

    Google Scholar 

  18. Carvalho NDSP, Arentshorst M, Jin Kwon M, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87(4):1463–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0 – a species independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fierro F, Kosalková K, Gutiérrez S, Martin JF (1996) Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr Genet 29:482–489

    Article  CAS  PubMed  Google Scholar 

  21. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly of multigene constructs. PLoS One 6(2):e16765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geu-flores F, Nour-eldin HH, Nielsen MT, Halkier BA (2007) USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res 35(7):e55

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sarrion-Perdigones A, Falconi EE, Zandalinas SI, Juárez P, Fernández-del-Carmen A, Granell A, Orzaez D (2011) GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PLoS One 6(7):21622

    Article  Google Scholar 

  24. Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stemmer M, Thumberger T, del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One 10(4):e0124633

    Article  PubMed  PubMed Central  Google Scholar 

  26. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123

    Article  CAS  PubMed  Google Scholar 

  28. Blin K, Pedersen LE, Weber T, Lee SY (2016) CRISPy-web: an online resource to design sgRNAs for CRISPR applications. Synth Syst Biotechnol 1(2):118–121

    Article  PubMed  PubMed Central  Google Scholar 

  29. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thyme SB, Akhmetova L, Montague TG, Valen E, Schier AF (2016) Internal guide RNA interactions interfere with Cas9-mediated cleavage. Nat Commun 7:11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran J-M (2009) Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 10:75

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement no. [607332], and the Marie Skłodowska-Curie Co-funding of regional, national and international programmes (COFUND-DP) ALERT programme under REA grant agreement no. [713482].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. M. Driessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pohl, C., Mózsik, L., Driessen, A.J.M., Bovenberg, R.A.L., Nygård, Y. (2018). Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles. In: Braman, J. (eds) Synthetic Biology. Methods in Molecular Biology, vol 1772. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7795-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7795-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7794-9

  • Online ISBN: 978-1-4939-7795-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics