Skip to main content

GWA-Portal: Genome-Wide Association Studies Made Easy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1761))

Abstract

Genome-wide association studies (GWAS) are an effective method for investigating the genetics of natural phenotypic variation in many different model organisms.

Here we present GWA-Portal, an interactive web application that enables researchers to upload their phenotypes and easily carry out GWAS directly in the browser. We will present all the steps needed—from uploading the phenotype to interpreting the results—using a published root phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, TT H, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JD, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis Thaliana inbred lines. Nature 465(7298):627–631. https://doi.org/10.1038/nature08800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12(10):232. https://doi.org/10.1186/gb-2011-12-10-232

    Article  PubMed  PubMed Central  Google Scholar 

  3. Todesco M, Balasubramanian S, TT H, Traw MB, Horton M, Epple P, Kuhns C, Sureshkumar S, Schwartz C, Lanz C, Laitinen RA, Huang Y, Chory J, Lipka V, Borevitz JO, Dangl JL, Bergelson J, Nordborg M, Weigel D (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis Thaliana. Nature 465(7298):632–636. https://doi.org/10.1038/nature09083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Genomes Consortium. Electronic address mngoaa, Genomes C (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis Thaliana. Cell 166(2):481–491. https://doi.org/10.1016/j.cell.2016.05.063

    Article  CAS  Google Scholar 

  5. Seren U, Vilhjalmsson BJ, Horton MW, Meng D, Forai P, Huang YS, Long Q, Segura V, Nordborg M (2012) GWAPP: a web application for genome-wide association mapping in Arabidopsis. Plant Cell 24(12):4793–4805. https://doi.org/10.1105/tpc.112.108068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Meijon M, Satbhai SB, Tsuchimatsu T, Busch W (2014) Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat Genet 46(1):77–81. https://doi.org/10.1038/ng.2824

    Article  PubMed  CAS  Google Scholar 

  7. Horton MW, Hancock AM, Huang YS, Toomajian C, Atwell S, Auton A, Muliyati NW, Platt A, Sperone FG, Vilhjalmsson BJ, Nordborg M, Borevitz JO, Bergelson J (2012) Genome-wide patterns of genetic variation in worldwide Arabidopsis Thaliana accessions from the RegMap panel. Nat Genet 44(2):212–216. https://doi.org/10.1038/ng.1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjalmsson BJ, Korte A, Nizhynska V, Voronin V, Korte P, Sedman L, Mandakova T, Lysak MA, Seren U, Hellmann I, Nordborg M (2013) Massive genomic variation and strong selection in Arabidopsis Thaliana lines from Sweden. Nat Genet 45(8):884–890. https://doi.org/10.1038/ng.2678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Series 26(2):211–252

    Google Scholar 

  10. Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39:269

    Article  CAS  PubMed  Google Scholar 

  11. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42(4):348–354. https://doi.org/10.1038/ng.548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360. https://doi.org/10.1038/ng.546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. https://doi.org/10.1534/genetics.107.080101

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cwiek-Kupczynska H, Altmann T, Arend D, Arnaud E, Chen D, Cornut G, Fiorani F, Frohmberg W, Junker A, Klukas C, Lange M, Mazurek C, Nafissi A, Neveu P, van Oeveren J, Pommier C, Poorter H, Rocca-Serra P, Sansone SA, Scholz U, van Schriek M, Seren U, Usadel B, Weise S, Kersey P, Krajewski P (2016) Measures for interoperability of phenotypic data: minimum information requirements and formatting. Plant Methods 12:44. https://doi.org/10.1186/s13007-016-0144-4

    Article  PubMed  PubMed Central  Google Scholar 

  15. Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29. https://doi.org/10.1186/1746-4811-9-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vilhjalmsson BJ, Nordborg M (2013) The nature of confounding in genome-wide association studies. Nat Rev Genet 14(1):1–2. https://doi.org/10.1038/nrg3382

    Article  PubMed  CAS  Google Scholar 

  17. Platt A, Vilhjalmsson BJ, Nordborg M (2010) Conditions under which genome-wide association studies will be positively misleading. Genetics 186(3):1045–1052. https://doi.org/10.1534/genetics.110.121665

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

GWA-Portal was developed in the course of the transPLANT project, which was funded by the European Commission within its 7th Framework Programme, under the thematic area “Infrastructures,” contract number 283496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ümit Seren .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 220755 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Seren, Ü. (2018). GWA-Portal: Genome-Wide Association Studies Made Easy. In: Ristova, D., Barbez, E. (eds) Root Development. Methods in Molecular Biology, vol 1761. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7747-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7747-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7746-8

  • Online ISBN: 978-1-4939-7747-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics