Skip to main content

Low Input Whole-Genome Bisulfite Sequencing Using a Post-Bisulfite Adapter Tagging Approach

  • Protocol
  • First Online:
Book cover DNA Methylation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1708))

Abstract

The epigenetic mark 5-methylcytosine confers heritable regulation of gene expression that can be dynamically modulated during transitions in cell fate. With the development of high-throughput sequencing technologies, it is now possible to obtain comprehensive genome-wide maps of the mammalian DNA methylation landscape, but the application of these techniques to limited material remains challenging. Here, we present an optimized protocol to perform whole-genome bisulfite sequencing on low inputs (100–5000 somatic cells) using a post-bisulfite adapter tagging approach. In this strategy, bisulfite treatment is performed prior to library generation in order to both convert unmethylated cytosines and fragment DNA to an appropriate size. Then sequencing adapters are added by complementary strand synthesis using random tetramer priming, and libraries are subsequently amplified by PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Smith ZD, Meissner A (2013) DNA methylation: roles inmammalian development. Nat Rev Genet 14:204–220

    Article  CAS  PubMed  Google Scholar 

  2. Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  3. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28:33–42

    Article  CAS  PubMed  Google Scholar 

  4. Seisenberger S, Peat JR, Hore TA et al (2012) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond Ser B Biol Sci 368:20110330

    Article  Google Scholar 

  5. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117

    Article  CAS  PubMed  Google Scholar 

  6. Weber M, Davies JJ, Wittig D et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  7. Harris RA, Wang T, Coarfa C et al (2010) Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 28:1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smallwood SA, Tomizawa S-I, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smallwood SA, Kelsey G (2012) Genome-wide analysis of DNA methylation in low cell numbers by reduced representation bisulfite sequencing. In: Genomic imprinting. Humana, Totowa, NJ, pp 187–197

    Chapter  Google Scholar 

  10. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shirane K, Toh H, Kobayashi H et al (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9:e1003439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobayashi H, Sakurai T, Imai M et al (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peat JR, Dean W, Clark SJ et al (2014) Genome-wide bisulfite sequencing in zygotes identifies demethylation targets and maps the contribution of TET3 oxidation. Cell Rep 9(6):1990–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stewart KR, Veselovska L, Kim J et al (2015) Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 29(23):2449–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quail MA, Otto TD, Gu Y et al (2012) Optimal enzymes for amplifying sequencing libraries. Nat Methods 9:10–11

    Article  CAS  Google Scholar 

  16. Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien A. Smallwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peat, J.R., Smallwood, S.A. (2018). Low Input Whole-Genome Bisulfite Sequencing Using a Post-Bisulfite Adapter Tagging Approach. In: Tost, J. (eds) DNA Methylation Protocols. Methods in Molecular Biology, vol 1708. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7481-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7481-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7479-5

  • Online ISBN: 978-1-4939-7481-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics