Skip to main content

Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem

  • Protocol
  • First Online:
Book cover Bacterial Multidrug Exporters

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1700))

Abstract

Emerging microtechnologies are aimed at developing a microsystem with densely packed array structure, i.e., an array with a femtoliter reaction chamber, for highly sensitive and quantitative biological assays. Here, we describe a novel femtoliter chamber array system (arrayed lipid bilayer chambers, ALBiC) that contains approximately a million femtoliter chambers, each sealed with a phospholipid bilayer membrane with extremely high efficiency (>90%). This novel platform enables detection of membrane transporter activity at the single-molecule level and thus expands the applicability of femtoliter chamber arrays to highly sensitive assays of transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  CAS  PubMed  Google Scholar 

  2. Zagnoni M (2012) Miniaturised technologies for the development of artificial lipid bilayer systems. Lab Chip 12:1026–1039

    Article  CAS  PubMed  Google Scholar 

  3. Watanabe R, Soga N, Fujita D, Tabata KV, Yamauchi L, Hyeon Kim S, Asanuma D, Kamiya M, Urano Y, Suga H, Noji H (2014) Arrayed lipid bilayer chambers allow single-molecule analysis of membrane transporter activity. Nat Commun 5:4519

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Watanabe R, Soga N, Yamanaka T, Noji H (2014) High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition. Sci Rep 4:7076

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soga N, Watanabe R, Noji H (2015) Attolitre-sized lipid bilayer chamber array for rapid detection of single transporters. Sci Rep 5:11025

    Article  PubMed  PubMed Central  Google Scholar 

  6. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal a-hemolysin, a heptameric transmembrane pore. Science 274:1859–1866

    Article  CAS  PubMed  Google Scholar 

  7. Junge W, Sielaff H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 459:364–370

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe R, Tabata KV, Iino R, Ueno H, Iwamoto M, Oiki S, Noji H (2013) Biased Brownian stepping rotation of FoF1-ATP synthase driven by proton motive force. Nat Commun 4:1631

    Article  PubMed  Google Scholar 

  9. Weber J (2010) Structural biology: toward the ATP synthase mechanism. Nat Chem Biol 6:794–795

    Article  CAS  PubMed  Google Scholar 

  10. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

  11. Asanuma D, Takaoka Y, Namiki S, Takikawa K, Kamiya M, Nagano T, Urano Y, Hirose K (2014) Acidic-pH-activatable fluorescence probes for visualizing exocytosis dynamics. Angew Chem Int Ed Engl 53:6085–6089

    Article  CAS  PubMed  Google Scholar 

  12. Iino R, Hasegawa R, Tabata KV, Noji H (2009) Mechanism of inhibition by C-terminal a-helices of the e subunit of Escherichia coli FoF1-ATP synthase. J Biol Chem 284:17457–17464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soga N, Kinosita K Jr, Yoshida M, Suzuki T (2011) Efficient ATP synthesis by thermophilic Bacillus FoF1-ATP synthase. FEBS J 278:2647–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soga N, Kinosita K Jr, Yoshida M, Suzuki T (2012) Kinetic equivalence of transmembrane pH and electrical potential differences in ATP synthesis. J Biol Chem 287:9633–9639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a Grant-in-Aid for Scientific Research No. 15H05591 and 15H01312 to R.W. from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and by a Precursory Research for Embryonic Science (PRESTO) grant to R.W. from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rikiya Watanabe or Hiroyuki Noji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Watanabe, R., Soga, N., Ohdate, Sy., Noji, H. (2018). Single-Molecule Analysis of Membrane Transporter Activity by Means of a Microsystem. In: Yamaguchi, A., Nishino, K. (eds) Bacterial Multidrug Exporters. Methods in Molecular Biology, vol 1700. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7454-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7454-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7452-8

  • Online ISBN: 978-1-4939-7454-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics