Skip to main content

Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon

  • Protocol
  • First Online:
Brachypodium Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1667))

Abstract

Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.

In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Draper J, Mur LAJ, Jenkins G et al (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ozdemir BS, Hernandez P, Filiz E, Budak H (2008) Brachypodium genomics. Int J Plant Genomics 2008:Article ID 536104. doi:10.1155/2008/536104

    Article  Google Scholar 

  3. International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  4. Bablak P, Draper J, Davey MR, Lynch PT (1995) Plant regeneration and micropropagation of Brachypodium distachyon. Plant Cell Tissue Organ Cult 42:97–107

    Article  Google Scholar 

  5. Vogel JP, Garvin DF, Leong OM, Hayden DM (2006) Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell Tissue Org Cult 84:199–211

    Article  Google Scholar 

  6. Christiansen P, Didion T, Andersen C, Folling M, Nielsen K (2005) A rapid and efficient transformation protocol for the grass Brachypodium distachyon. Plant Cell Rep 23:751–758

    Article  CAS  PubMed  Google Scholar 

  7. Pacurar DI, Thordal-Christensen H, Nielsen KK, Lenk I (2007) A high-throughput Agrobacterium-mediated transformation system for the grass model species Brachypodium distachyon L. Transgenic Res 17:965–975

    Article  PubMed  Google Scholar 

  8. Vogel J, Hill T (2007) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  PubMed  Google Scholar 

  9. Vain P, Worland B, Thole V, McKenzie N, Alves SC, Opanowicz M, Fish LJ, Bevan MW, Snape JW (2008) Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for T-DNA insertional mutagenesis. Plant Biotechnol J 6(3):236–245

    Article  CAS  PubMed  Google Scholar 

  10. Alves SC, Worland B, Thole V, Snape JW, Bevan MW, Vain P (2009) A protocol for Agrobacterium-mediated transformation of Brachypodium distachyon community standard line Bd21. Nat Protoc 4(5):638–649

    Article  CAS  PubMed  Google Scholar 

  11. Lee MB, Jeon WB, Kim DY, Bold O, Hong MJ, Lee YJ, Park JH, Seo YW (2011) Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21 with two binary vectors containing hygromycin resistance and GUS reporter genes. J Crop Sci Biotechnol 14(4):233–238

    Article  Google Scholar 

  12. Fursova O, Pogorelko G, Zabotina OA (2012) An efficient method for transient gene expression in monocots applied to modify the Brachypodium distachyon cell wall. Ann Bot. doi:10.1093/aob/mcs103

  13. Trabucco GM, Matos DA, Lee SJ, Saathoff AJ, Priest HD, Mockler TC, Sarath G, Hazen SP (2013) Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 13(1):61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filiz E, Ozdemir BS, Budak F, Vogel JP, Tuna M, Budak H (2009) Molecular, morphological and cytological analysis of diverse Brachypodium distachyon inbred lines. Genome 52(10):876–890

    Article  CAS  PubMed  Google Scholar 

  15. Nadolska-Orczyk A, Orczyk W, Przetakiewiez A (2000) Agrobacterium-mediated transformation of cereals- from technique development to its application. Acta Physiol Plant 22:77–88

    Article  CAS  Google Scholar 

  16. Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1(5):1–9

    Google Scholar 

  17. Murashige T, Skoog F (1962) A revised medium for rapid growth bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  18. Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  20. Li L, Li R, Fei S, Qu R (2005) Agrobacterium-mediated transformation of common bermudagrass (Cynodon dactylon). Plant Cell Tissue Org Cult 83:223–229

    Article  Google Scholar 

  21. Luo H, Hu Q, Nelson K, Longo C et al (2004) Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Rep 22:645–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by TÜBA-GEBİP and Sabancı University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahar Sogutmaz Ozdemir or Hikmet Budak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sogutmaz Ozdemir, B., Budak, H. (2018). Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon . In: Sablok, G., Budak, H., Ralph, P. (eds) Brachypodium Genomics. Methods in Molecular Biology, vol 1667. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7278-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7278-4_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7276-0

  • Online ISBN: 978-1-4939-7278-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics