Skip to main content

Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1657))

Abstract

Capture compound technology coupled to mass spectrometry (CCMS) allows to biochemically identify ligand receptors. Using a c-di-GMP-specific Capture Compound, we adapted this method for the identification and characterization of c-di-GMP binding proteins in any bacterial species. Because in silico analysis often fails to predict novel c-di-GMP effectors, this universal method aims at better defining the cellular c-di-GMP network in a wide range of bacteria. CCMS was successfully applied in several bacterial species (Nesper et al., J Proteom 75:4874–4878, 2012; Steiner et al., EMBO J 32:354–368, 2013; Tschowri et al., Cell 158:1136–1147, 2014; Trampari et al., J Biol Chem 290:24470–24483, 2015; Rotem et al., J Bacteriol 198:127–137, 2015). To outline the detailed protocol and to illustrate its power, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control, as an example. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nesper J, Reinders A, Glatter T, Schmidt A, Jenal U (2012) A novel capture compound for the identification and analysis of cyclic di-GMP binding proteins. J Proteom 75(15):4874–4878. doi:10.1016/j.jprot.2012.05.033

    Article  CAS  Google Scholar 

  2. Steiner S, Lori C, Boehm A, Jenal U (2013) Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32(3):354–368. doi:10.1038/emboj.2012.315

    Article  CAS  PubMed  Google Scholar 

  3. Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ (2014) Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development. Cell 158(5):1136–1147. doi:10.1016/j.cell.2014.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trampari E, Stevenson CE, Little RH, Wilhelm T, Lawson DM, Malone JG (2015) Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem 290(40):24470–24483. doi:10.1074/jbc.M115.661439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rotem O, Nesper J, Borovok I, Gorovits R, Kolot M, Pasternak Z, Shin I, Glatter T, Pietrokovski S, Jenal U, Jurkevitch E (2015) An extended cyclic di-GMP network in the predatory bacterium Bdellovibrio bacteriovorus. J Bacteriol 198(1):127–137. doi:10.1128/JB.00422-15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hengge R (2009) Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7(4):263–273. doi:10.1038/nrmicro2109

    Article  CAS  PubMed  Google Scholar 

  7. Sondermann H, Shikuma NJ, Yildiz FH (2012) You've come a long way: c-di-GMP signaling. Curr Opin Microbiol 15(2):140–146. doi:10.1016/j.mib.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schirmer T, Jenal U (2009) Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 7(10):724–735. doi:10.1038/nrmicro2203

    Article  CAS  PubMed  Google Scholar 

  9. Christen M, Christen B, Folcher M, Schauerte A, Jenal U (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J Biol Chem 280(35):30829–30837. doi:10.1074/jbc.M504429200

    Article  CAS  PubMed  Google Scholar 

  10. Ryan RP, Fouhy Y, Lucey JF, Dow JM (2006) Cyclic di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol 188(24):8327–8334. doi:10.1128/JB.01079-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U (2009) Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression. Genes Dev 23(1):93–104. doi:10.1101/gad.502409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Newell PD, Monds RD, O'Toole GA (2009) LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. Proc Natl Acad Sci U S A 106(9):3461–3466. doi:10.1073/pnas.0808933106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Amikam D, Galperin MY (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22(1):3–6. doi:10.1093/bioinformatics/bti739

    Article  CAS  PubMed  Google Scholar 

  14. Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166. doi:10.1038/sj.emboj.7601918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li W, Cui T, Hu L, Wang Z, Li Z, He ZG (2015) Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat Commun 6:8330. doi:10.1038/ncomms9330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Romling U, Gomelsky M (2014) GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol 93(3):439–452. doi:10.1111/mmi.12672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang YC, Chin KH, Tu ZL, He J, Jones CJ, Sanchez DZ, Yildiz FH, Galperin MY, Chou SH (2016) Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat Commun 7:12481. doi:10.1038/ncomms12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lenz T, Poot P, Grabner O, Glinski M, Weinhold E, Dreger M, Koster H (2010) Profiling of methyltransferases and other S-adenosyl-L-homocysteine-binding proteins by capture compound mass spectrometry (CCMS). J Vis Exp: JoVE 46. doi:10.3791/2264

  19. Köster H, Little DP, Luan P, Muller R, Siddiqi SM, Marappan S, Yip P (2007) Capture compound mass spectrometry: a technology for the investigation of small molecule protein interactions. Assay Drug Dev Technol 5(3):381–390. doi:10.1089/adt.2006.039

    Article  PubMed  Google Scholar 

  20. Düvel J, Bertinetti D, Möller S, Schwede F, Morr M, Wissing J, Radamm L, Zimmermann B, Genieser H, Jänsch L, Herberg F, Häussler S (2012) A chemical proteomics approach to identify c-di-GMP binding proteins in Pseudomonas aeruginosa. J Microbiol Methods 88(2):229–236. doi:10.1016/j.mimet.2011.11.015

    Article  PubMed  Google Scholar 

  21. Laventie BJ, Nesper J, Ahrne E, Glatter T, Schmidt A, Jenal U (2015) Capture compound mass spectrometry–a powerful tool to identify novel c-di-GMP effector proteins. J Vis Exp: JoVE 97. doi:10.3791/51404

  22. Baraquet C, Harwood CS (2013) Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker a motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci U S A 110(46):18478–18483. doi:10.1073/pnas.1318972110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bertinetti D, Schweinsberg S, Hanke SE, Schwede F, Bertinetti O, Drewianka S, Genieser HG, Herberg FW (2009) Chemical tools selectively target components of the PKA system. BMC Chem Biol 9:3. doi:10.1186/1472-6769-9-3

    Article  PubMed  PubMed Central  Google Scholar 

  24. Dalhoff C, Huben M, Lenz T, Poot P, Nordhoff E, Koster H, Weinhold E (2010) Synthesis of S-adenosyl-L-homocysteine capture compounds for selective photoinduced isolation of methyltransferases. Chembiochem: a Eur J Chem Biol 11(2):256–265. doi:10.1002/cbic.200900349

    Article  CAS  Google Scholar 

  25. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3. Article3. doi:10.2202/1544-6115.1027

Download references

Acknowledgments

We thank Jutta Nesper who established the protocol and Alberto Reinders for his work in adapting the CCMS conditions for P. aeruginosa. We also thank Pablo Manfredi for the annotation of the P. aeruginosa proteins and Erik Ahrné for his help with the MS data evaluation. This work was supported by the Swiss National Science Foundation (SNF) Sinergia grant CRSII3_127433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît-Joseph Laventie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Laventie, BJ., Glatter, T., Jenal, U. (2017). Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins. In: Sauer, K. (eds) c-di-GMP Signaling. Methods in Molecular Biology, vol 1657. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7240-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7240-1_28

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7239-5

  • Online ISBN: 978-1-4939-7240-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics