Skip to main content

Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy

  • Protocol
  • First Online:
Proteomics for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1647))

Abstract

Electron microscopy (EM) is a rapidly growing area of structural biology that permits us to decode biological assemblies at the nanoscale. To examine biological materials for single particle EM analysis, purified assemblies must be obtained using biochemical separation techniques. Here, we describe effective methodologies for isolating histidine (his)-tagged protein assemblies from the nucleus of disease-relevant cell lines. We further demonstrate how isolated assemblies are visualized using single particle EM techniques and provide representative results for each step in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Taylor KA, Glaeser RM (2008) Retrospective on the early development of cryoelectron microscopy of macromolecules and a prospective on opportunities for the future. J Struct Biol 163(3):214–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frank J, Radermacher M, Penczek P et al (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199

    Article  CAS  PubMed  Google Scholar 

  3. Gilmore BL, Winton CE, Demmert AC et al (2015) A molecular toolkit to visualize native protein assemblies in the context of human disease. Sci Rep 5:14440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Winton CE (2016) A microchip platform for structural oncology applications. NPJ Breast Cancer 2:16016

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim I, Li C, Liang D et al (2008) Polycystin-2 expression is regulated by a PC2-binding domain in the intracellular portion of fibrocystin. J Biol Chem 283(46):31559–31566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boddu R, Yang C, O'Connor AK et al (2014) Intragenic motifs regulate the transcriptional complexity of Pkhd1/PKHD1. J Mol Med (Berl) 92(10):1045–1056

    Article  CAS  PubMed Central  Google Scholar 

  7. Guay-Woodford LM (2014) Autosomal recessive polycystic kidney disease: the prototype of the hepato-renal fibrocystic diseases. J Pediatr Genet 2:89–101

    Google Scholar 

  8. Rauchman MI, Nigam SK, Delpire E, Gullans SR (1993) An osmotically tolerant inner medullary collecting duct cell line from an SV40 transgenic mouse. Am J Phys 3(Pt 2):F416–F424

    Google Scholar 

  9. Scheres SH (2012) A Bayesian view on cryo-EM structure determination. J Mol Biol 415(2):406–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by NIH/NCI grant R01CA193578 to D.F.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah F. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cameron Varano, A., Harafuji, N., Dearnaley, W., Guay-Woodford, L., Kelly, D.F. (2017). Preparation of Disease-Related Protein Assemblies for Single Particle Electron Microscopy. In: Lazar, I., Kontoyianni, M., Lazar, A. (eds) Proteomics for Drug Discovery. Methods in Molecular Biology, vol 1647. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7201-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7201-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7200-5

  • Online ISBN: 978-1-4939-7201-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics