Skip to main content

Cellular Delivery of siRNAs Using Bolaamphiphiles

  • Protocol
  • First Online:
  • 1793 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1632))

Abstract

Discovery of RNA interference (RNAi) has opened up a new arena of therapeutic intervention for the treatment of cancerous as well as noncancerous diseases. The RNAi pathway utilizes RNAi inducers such as small interfering RNAs (siRNAs) to target and silence disease causing genes. However, efficient delivery of siRNAs for eliciting efficacious RNAi has remained a daunting challenge. Nonviral vectors such as lipids have shown great promise in delivering siRNAs. Recently, a novel class of cationic lipid molecules “bolaamphiphile lipids” or “bola lipids” has been shown to deliver siRNAs to cause effective gene silencing in cells. The present chapter showcases the ability of bola lipids to form micelles, bind with nucleic acids and protect nucleic acids against nucleases. Also, high in vitro transfection efficiency for silencing green fluorescent protein (GFP) using Dicer substrate siRNAs (dsiRNAs) designed against GFP at nontoxic dose in a human breast cancer model is demonstrated. Our results showed that these cationic bola lipids are promising siRNA delivery agents.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sledz CA, Williams BR (2005) RNA interference in biology and disease. Blood 106(3):787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Afonin KA et al (2015) Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS Nano 9(1):251–259

    Article  CAS  PubMed  Google Scholar 

  4. Liu J et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  5. Meister G et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  CAS  PubMed  Google Scholar 

  6. Valencia-Sanchez MA et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  7. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138

    Article  CAS  PubMed  Google Scholar 

  8. Parlea L et al (2016) Cellular delivery of RNA nanoparticles. ACS Comb Sci 18(9):527–547

    Article  CAS  PubMed  Google Scholar 

  9. Gupta K et al (2015) Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications. J Control Release 213:142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Zhao Y, Zhi D (2012) Non-viral vectors for the mediation of RNAi. Bioorg Chem 40(1):10–18

    Article  PubMed  Google Scholar 

  11. Zhang S, Zhi D, Huang L (2012) Lipid-based vectors for siRNA delivery. J Drug Target 20(9):724–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kanasty R et al (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967–977

    Article  CAS  PubMed  Google Scholar 

  13. Kim T et al (2013) In silico, in vitro, and in vivo studies indicate the potential use of bolaamphiphiles for therapeutic siRNAs delivery. Mol Ther Nucleic acids 2:e80

    Article  PubMed  PubMed Central  Google Scholar 

  14. Afonin KA et al (2013) Activation of different split functionalities on re-association of RNA-DNA hybrids. Nat Nanotechnol 8(4):296–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Afonin KA et al (2014) Multifunctional RNA nanoparticles. Nano Lett 14(10):5662–5671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grinberg S et al (2005) Novel cationic amphiphilic derivatives from vernonia oil: synthesis and self-aggregation into bilayer vesicles, nanoparticles, and DNA complexants. Langmuir 21(17):7638–7645

    Article  CAS  PubMed  Google Scholar 

  17. Popov M et al (2010) Cationic vesicles from novel bolaamphiphilic compounds. J Liposome Res 20(2):147–159

    Article  CAS  PubMed  Google Scholar 

  18. Kim DH et al (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226

    Article  CAS  PubMed  Google Scholar 

  19. Rose SD et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33(13):4140–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Popov M et al (2013) Delivery of analgesic peptides to the brain by nano-sized bolaamphiphilic vesicles made of monolayer membranes. Eur J Pharm Biopharm 85(3 Pt A):381–389

    Article  CAS  PubMed  Google Scholar 

  21. Dulbecco R, Freeman G (1959) Plaque production by the polyoma virus. Virology 8(3):396–397

    Article  CAS  PubMed  Google Scholar 

  22. Bindewald E et al (2016) Multistrand structure prediction of nucleic acid assemblies and design of RNA switches. Nano Lett 16(3):1726–1735

    Article  CAS  PubMed  Google Scholar 

  23. Afonin KA et al (2011) Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine. Nat Protoc 6(12):2022–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under Contract No. HHSN261200800001E. This research was supported [in part] by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products, or organizations imply endorsement by the US Government. Dr. Kshitij Gupta also acknowledges “Scientist pool officer” position awarded by Council of Scientific and Industrial Research, New Delhi, India and “Young Scientist” award “YSS/2014/000937” by Science and Engineering Research Board, Department of Science & Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshitij Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gupta, K. (2017). Cellular Delivery of siRNAs Using Bolaamphiphiles. In: Bindewald, E., Shapiro, B. (eds) RNA Nanostructures . Methods in Molecular Biology, vol 1632. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7138-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7138-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7137-4

  • Online ISBN: 978-1-4939-7138-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics