Skip to main content
Book cover

PCR pp 1–31Cite as

In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1620))

Abstract

The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory “wet bench” experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Walker-Daniels J (2012) Current PCR methods. Mat Methods 2:119. doi:10.13070/mm.en.2.119

    Google Scholar 

  2. Tisi LC et al. (2010) Nucleic acid amplification. Canada Patent CA2417798

    Google Scholar 

  3. Notomi T et al (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63. doi:10.1093/nar/28.12.e63

    Article  CAS  Google Scholar 

  4. Walker GT et al (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20(7):1691–1696. doi:10.1093/nar/20.7.1691

    Article  CAS  Google Scholar 

  5. Banér J et al (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26(22):5073–5078. doi:10.1093/nar/26.22.5073

    Article  Google Scholar 

  6. Tatsumi K et al (2008) Rapid screening assay for KRAS mutations by the modified smart amplification process. J Mol Diagn 10(6):520–526. doi:10.2353/jmoldx.2008.080024

    Article  CAS  Google Scholar 

  7. Kwoh DY et al (1989) Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A 86(4):1173–1177

    Article  CAS  Google Scholar 

  8. Fahy E et al (1991) Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Methods Appl 1(1):25–33. doi:10.1101/gr.1.1.25

    Article  CAS  Google Scholar 

  9. Vincent M et al (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5(8):795–800. doi:10.1038/sj.embor.7400200

    Article  CAS  Google Scholar 

  10. Kurn N et al (2005) Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin Chem 51(10):1973–1981. doi:10.1373/clinchem.2005.053694

    Article  CAS  Google Scholar 

  11. Fang R et al (2009) Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens. J Clin Microbiol 47(3):845–847. doi:10.1128/JCM.01528-08

    Article  CAS  Google Scholar 

  12. Zhao Y et al (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491–12545. doi:10.1021/acs.chemrev.5b00428

    Article  CAS  Google Scholar 

  13. Katja Niemann VT (2015) Isothermal amplification and quantification of nucleic acids and its use in microsystems. J Nanosci Nanotechnol 06(03). doi:10.4172/2157-7439.1000282

  14. Fakruddin M et al (2013) Nucleic acid amplification: alternative methods of polymerase chain reaction. J Pharm Bioallied Sci 5(4):245–252. doi:10.4103/0975-7406.120066

    Article  Google Scholar 

  15. Liu W et al (2015) Polymerase spiral reaction (PSR): a novel isothermal nucleic acid amplification method. Sci Rep 5:12723. doi:10.1038/srep12723

    Article  CAS  Google Scholar 

  16. Smykal P et al (2009) Evolutionary conserved lineage of Angela-family retrotransposons as a genome-wide microsatellite repeat dispersal agent. Heredity (Edinb) 103(2):157–167. doi:10.1038/hdy.2009.45

    Article  CAS  Google Scholar 

  17. Kalendar R, Schulman AH (2014) Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Mol Biol 1115:233–255. doi:10.1007/978-1-62703-767-9_12

  18. Kalendar R et al (2011) Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520–530. doi:10.1038/hdy.2010.93

    Article  CAS  Google Scholar 

  19. Hosid E et al (2012) Diversity of long terminal repeat retrotransposon genome distribution in natural populations of the wild diploid wheat Aegilops speltoides. Genetics 190(1):263–274. doi:10.1534/genetics.111.134643

    Article  CAS  Google Scholar 

  20. Belyayev A et al (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA 1(6):1–16. doi:10.1186/1759-8753-1-6

    Google Scholar 

  21. Kalendar R et al (2014) FastPCR software for PCR, in silico PCR, and oligonucleotide assembly and analysis. In: Valla S, Lale R (eds) DNA cloning and assembly methods, Methods in molecular biology, vol 1116. Humana, New York, NY, pp 271–302. doi:10.1007/978-1-62703-764-8_18

    Chapter  Google Scholar 

  22. Kalendar R et al (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98(2):137–144. doi:10.1016/j.ygeno.2011.04.009

    Article  CAS  Google Scholar 

  23. Lexa M et al (2001) Virtual PCR. Bioinformatics 17(2):192–193. doi:10.1093/bioinformatics/17.2.192

    Article  CAS  Google Scholar 

  24. Yu B, Zhang C (2011) In silico PCR analysis. Methods Mol Biol 760:91–107. doi:10.1007/978-1-61779-176-5_6

    Article  CAS  Google Scholar 

  25. Salinas NR, Little DP (2012) Electric LAMP: virtual loop-mediated isothermal AMPlification. ISRN Bioinform 2012:696758. doi:10.5402/2012/696758

    Article  Google Scholar 

  26. Johnson M et al (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server issue):5–9. doi:10.1093/nar/gkn201

    Article  Google Scholar 

  27. Boutros PC, Okey AB (2004) PUNS: transcriptomic- and genomic-in silico PCR for enhanced primer design. Bioinformatics 20(15):2399–2400. doi:10.1093/bioinformatics/bth257

    Article  CAS  Google Scholar 

  28. Bikandi J et al (2004) In silico analysis of complete bacterial genomes: PCR, AFLP–PCR and endonuclease restriction. Bioinformatics 20(5):798–799. doi:10.1093/bioinformatics/btg491

    Article  CAS  Google Scholar 

  29. Rotmistrovsky K et al (2004) A web server for performing electronic PCR. Nucleic Acids Res 32(Suppl 2):W108–W112. doi:10.1093/nar/gkh450

    Article  CAS  Google Scholar 

  30. Gardner SN, Slezak T (2014) Simulate_PCR for amplicon prediction and annotation from multiplex, degenerate primers and probes. BMC Bioinformatics 15(1):1–6. doi:10.1186/1471-2105-15-237

    Article  CAS  Google Scholar 

  31. Ye J et al (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

  32. Peyret N et al (1999) Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38(12):3468–3477. doi:10.1021/bi9825091

    Article  CAS  Google Scholar 

  33. SantaLucia J Jr et al (1996) Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35(11):3555–3562. doi:10.1021/bi951907q

    Article  CAS  Google Scholar 

  34. Lane AN et al (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36(17):5482–5515. doi:10.1093/nar/gkn517

    Article  CAS  Google Scholar 

  35. Shing Ho P (1994) The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. Proc Natl Acad Sci U S A 91(20):9549–9553

    Article  Google Scholar 

  36. Nomenclature for incompletely specified bases in nucleic acid sequences (1984) http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html.

Download references

Acknowledgments

Java Web tools are publicly available. They may not be reproduced or distributed for commercial use. This work was supported by the companies Primer Digital Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslan Kalendar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kalendar, R., Muterko, A., Shamekova, M., Zhambakin, K. (2017). In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching. In: Domingues, L. (eds) PCR. Methods in Molecular Biology, vol 1620. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7060-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7060-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-7059-9

  • Online ISBN: 978-1-4939-7060-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics