Skip to main content

Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1600))

Abstract

Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ (2016) Aptamers as synthetic receptors for food quality and safety control. Compr Anal Chem 74:155–191. doi:10.1016/bs.coac.2016.03.021

    Article  Google Scholar 

  2. Ferguson BS, Hoggarth DA, Maliniak D et al (2013) Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci Transl Med 5:213ra165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee TM-H (2008) Over-the-counter biosensors: past, present, and future. Sensors 8:5535–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lubin AA, Lai RY, Baker BR et al (2006) Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem 78:5671–5677

    Article  CAS  PubMed  Google Scholar 

  5. Hasanzadeh M, Shadjou N (2016) Electrochemical nanobiosensing in whole blood: recent advances. TrAC Trends Anal Chem 80:167–176

    Article  CAS  Google Scholar 

  6. Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43:496–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vallee-Belisle A, Bonham AJ, Reich NO et al (2011) Transcription factor beacons for the quantitative detection of DNA binding activity. J Am Chem Soc 133:13836–13839

    Article  CAS  PubMed  Google Scholar 

  8. Schaffner SR, Norquest K, Baravik E et al (2014) Conformational design optimization of transcription factor beacon DNA biosensors. Sens Bio-Sensing Res 2:49–54

    Article  Google Scholar 

  9. Fetter L, Richards J, Daniel J et al (2015) Electrochemical aptamer scaffold biosensors for detection of botulism and ricin toxins. Chem Commun (Camb) 51:15137–15140

    Article  CAS  Google Scholar 

  10. Rowe AA, White RJ, Bonham AJ, Plaxco KW (2011) Fabrication of electrochemical-DNA biosensors for the reagentless detection of nucleic acids, proteins and small molecules. J Vis Exp 52:e2922

    Google Scholar 

  11. Ricci F, Plaxco KW (2008) E-DNA sensors for convenient, label-free electrochemical detection of hybridization. Microchim Acta 163:149–155

    Article  CAS  Google Scholar 

  12. Xiao Y, Uzawa T, White RJ et al (2009) On the signaling of electrochemical aptamer-based sensors: collision- and folding-based mechanisms. Electroanalysis 21:1267–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Wagan S, Dávila-Morris M et al (2014) Achieving reproducible performance of electrochemical folding aptamer-based sensors on microelectrodes: challenges and prospects. Anal Chem 86:11417–11424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263

    Article  CAS  PubMed  Google Scholar 

  15. Vallée-Bélisle A, Ricci F, Uzawa T et al (2012) Bioelectrochemical switches for the quantitative detection of antibodies directly in whole blood. J Am Chem Soc 134:15197–15200

    Article  PubMed  Google Scholar 

  16. Bonham AJ, Hsieh K, Ferguson BS et al (2012) Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor. J Am Chem Soc 134:3346–3348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vazquez-Cintron EJ, Vakulenko M, Band PA et al (2014) Atoxic derivative of botulinum neurotoxin a as a prototype molecular vehicle for targeted delivery to the neuronal cytoplasm. PLoS One 9:e85517

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xiao Y, Lai RY, Plaxco KW (2007) Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing. Nat Protoc 2:2875–2880

    Article  CAS  PubMed  Google Scholar 

  20. Creager SE, Olsen KG (1995) Self-assembled monolayers and enzyme electrodes: progress, problems and prospects. Anal Chim Acta 307:277–289

    Article  CAS  Google Scholar 

  21. White RJ, Plaxco KW (2009) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82:73–76

    Article  Google Scholar 

  22. Uzawa T, Cheng RR, White RJ et al (2010) A mechanistic study of electron transfer from the distal termini of electrode-bound, single-stranded DNAs. J Am Chem Soc 132:16120–16126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vallée-Bélisle A, Ricci F, Plaxco KW (2012) Engineering biosensors with extended, narrowed, or arbitrarily edited dynamic range. J Am Chem Soc 134:2876–2879

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by Nature. Curr Opin Struct Biol 20:518–526

    Article  PubMed  PubMed Central  Google Scholar 

  25. White RJ, Plaxco KW (2009) Engineering new aptamer geometries for electrochemical aptamer-based sensors. In: Fell NF, Jr, Swaminathan VS (eds) Proc Soc Photo Opt Instrum Eng. SPIE, Department of Chemistry and Biochemistry University of California, Santa Barbara, Santa Barbara, CA 93106-9510, p 732105

    Google Scholar 

  26. Schoukroun-Barnes LR, Wagan S, White RJ (2014) Enhancing the analytical performance of electrochemical RNA aptamer-based sensors for sensitive detection of aminoglycoside antibiotics. Anal Chem 86:1131–1137

    Article  CAS  PubMed  Google Scholar 

  27. White RJ, Phares N, Lubin AA et al (2008) Optimization of electrochemical aptamer-based sensors via optimization of probe packing density and surface chemistry. Langmuir 24:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang K-C, White RJ (2013) Random walk on a leash: a simple single-molecule diffusion model for surface-tethered redox molecules with flexible linkers. J Am Chem Soc 135:12808–12817

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work would not be possible without ideas from Kevin Plaxco, University of California Santa Barbara, and Ryan White, University of Maryland Baltimore County. Support for this work was provided by the Metropolitan State University of Denver’s College of Letters, Arts, and Sciences Dean’s office, Provost’s office, and the Applied Learning Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Bonham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Daniel, J., Fetter, L., Jett, S., Rowland, T.J., Bonham, A.J. (2017). Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins. In: Holst, O. (eds) Microbial Toxins. Methods in Molecular Biology, vol 1600. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6958-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6958-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6956-2

  • Online ISBN: 978-1-4939-6958-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics