Skip to main content

Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery

  • Protocol
  • First Online:
Neuroproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1598))

Abstract

Mapping provides a direct means to assess the impact of protein biomarkers and puts into context their relevance in the type of cancer being examined. To this end, mass spectrometry imaging (MSI) was developed to provide the needed spatial information which is missing in traditional liquid-based mass spectrometric proteomics approaches. Aptly described as a “molecular histology” technique, MSI gives an additional dimension in characterizing tumor biopsies, allowing for mapping of hundreds of molecules in a single analysis. A decade of developments focused on improving and standardizing MSI so that the technique can be translated into the clinical setting. This review describes the progress made in addressing the technological development that allows to bridge local protein detection by MSI to its identification and to illustrate its potential in studying various aspects of cancer biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kallback P, Shariatgorji M, Nilsson A, Andren PE (2012) Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. J Proteomics 75:4941–4951

    Article  PubMed  Google Scholar 

  2. Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos JM, Bouzom F, Stauber J (2012) Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteomics 75:4952–4961

    Article  CAS  PubMed  Google Scholar 

  3. Takai N, Tanaka Y, Watanabe A, Saji H (2013) Quantitative imaging of a therapeutic peptide in biological tissue sections by MALDI MS. Bioanalysis 5:603–612

    Article  CAS  PubMed  Google Scholar 

  4. Shanta SR, Kim TY, Hong JH, Lee JH, Shin CY, Kim KH, Kim YH, Kim SK, Kim KP (2012) A new combination MALDI matrix for small molecule analysis: application to imaging mass spectrometry for drugs and metabolites. Analyst 137:5757–5762

    Article  CAS  PubMed  Google Scholar 

  5. Bhandari DR, Schott M, Rompp A, Vilcinskas A, Spengler B (2015) Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius. Anal Bioanal Chem 407:2189–2201

    Article  CAS  PubMed  Google Scholar 

  6. Li B, Bhandari DR, Janfelt C, Rompp A, Spengler B (2014) Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging. Plant J 80:161–171

    Article  CAS  PubMed  Google Scholar 

  7. Demeyer M, Wisztorski M, Decroo C, De Winter J, Caulier G, Hennebert E, Eeckhaut I, Fournier I, Flammang P, Gerbaux P (2015) Inter- and intra-organ spatial distributions of sea star saponins by MALDI imaging. Anal Bioanal Chem 407:8813–8824

    Article  CAS  PubMed  Google Scholar 

  8. Sturtevant D, Lee YJ, Chapman KD (2016) Matrix assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) for direct visualization of plant metabolites in situ. Curr Opin Biotechnol 37:53–60

    Article  CAS  PubMed  Google Scholar 

  9. Cerruti CD, Benabdellah F, Laprevote O, Touboul D, Brunelle A (2012) MALDI imaging and structural analysis of rat brain lipid negative ions with 9-aminoacridine matrix. Anal Chem 84:2164–2171

    Article  CAS  PubMed  Google Scholar 

  10. Ruh H, Salonikios T, Fuchser J, Schwartz M, Sticht C, Hochheim C, Wirnitzer B, Gretz N, Hopf C (2013) MALDI imaging MS reveals candidate lipid markers of polycystic kidney disease. J Lipid Res 54:2785–2794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Veselkov KA, Mirnezami R, Strittmatter N, Goldin RD, Kinross J, Speller AV, Abramov T, Jones EA, Darzi A, Holmes E, Nicholson JK, Takats Z (2014) Chemo-informatic strategy for imaging mass spectrometry-based hyperspectral profiling of lipid signatures in colorectal cancer. Proc Natl Acad Sci U S A 111:1216–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitchell CA, Long H, Donaldson M, Francese S, Clench MR (2015) Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling. Lipids Health Dis 14:84

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gustafsson OJ, Briggs MT, Condina MR, Winderbaum LJ, Pelzing M, McColl SR, Everest-Dass AV, Packer NH, Hoffmann P (2015) MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney. Anal Bioanal Chem 407:2127–2139

    Article  CAS  PubMed  Google Scholar 

  14. Powers TW, Neely BA, Shao Y, Tang H, Troyer DA, Mehta AS, Haab BB, Drake RR (2014) MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS One 9:e106255

    Article  PubMed  PubMed Central  Google Scholar 

  15. Toghi Eshghi S, Yang S, Wang X, Shah P, Li X, Zhang H (2014) Imaging of N-linked glycans from formalin-fixed paraffin-embedded tissue sections using MALDI mass spectrometry. ACS Chem Biol 9:2149–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Powers TW, Holst S, Wuhrer M, Mehta AS, Drake RR (2015) Two-dimensional N-glycan distribution mapping of hepatocellular carcinoma tissues by MALDI-imaging mass spectrometry. Biomolecules 5:2554–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Briggs MT, Kuliwaba JS, Muratovic D, Everest-Dass AV, Packer NH, Findlay DM, Hoffmann P (2016) MALDI mass spectrometry imaging of N-glycans on tibial cartilage and subchondral bone proteins in knee osteoarthritis. Proteomics, published online 15 Mar 2016, doi:010.1002/pmic.201500461

  18. Pratavieira M, da Silva Menegasso AR, Garcia AM, Dos Santos DS, Gomes PC, Malaspina O, Palma MS (2014) MALDI imaging analysis of neuropeptides in the Africanized honeybee (Apis mellifera) brain: effect of ontogeny. J Proteome Res 13:3054–3064

    Article  CAS  PubMed  Google Scholar 

  19. Jiao J, Miao A, Zhang Y, Fan Q, Lu Y, Lu H (2015) Imaging phosphorylated peptide distribution in human lens by MALDI MS. Analyst 140:4284–4290

    Article  CAS  PubMed  Google Scholar 

  20. OuYang C, Chen B, Li L (2015) High throughput in situ DDA analysis of neuropeptides by coupling novel multiplex mass spectrometric imaging (MSI) with gas-phase fractionation. J Am Soc Mass Spectrom 26:1992–2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klein O, Strohschein K, Nebrich G, Oetjen J, Trede D, Thiele H, Alexandrov T, Giavalisco P, Duda GN, von Roth P, Geissler S, Klose J, Winkler T (2014) MALDI imaging mass spectrometry: discrimination of pathophysiological regions in traumatized skeletal muscle by characteristic peptide signatures. Proteomics 14:2249–2260

    Article  CAS  PubMed  Google Scholar 

  22. Hunt NJ, Phillips L, Waters KA, Machaalani R (2016) Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants. J Proteomics 138:48–60

    Article  CAS  PubMed  Google Scholar 

  23. Schey KL, Hachey AJ, Rose KM, Grey AC (2016) MALDI imaging mass spectrometry of pacific white shrimp L. vannamei and identification of abdominal muscle proteins. Proteomics, published online 16 Mar 2016, doi:10.1002/pmic.201500531

  24. Spraggins JM, Rizzo DG, Moore JL, Noto MJ, Skaar EP, Caprioli RM (2016) Next-generation technologies for spatial proteomics: integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis. Proteomics, published online 6 Apr 2016, doi:10.1002/pmic.201600003

  25. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  PubMed  Google Scholar 

  26. Cillero-Pastor B, Heeren RM (2014) Matrix-assisted laser desorption ionization mass spectrometry imaging for peptide and protein analyses: a critical review of on-tissue digestion. J Proteome Res 13:325–335

    Article  CAS  PubMed  Google Scholar 

  27. Chaurand P (2012) Imaging mass spectrometry of thin tissue sections: a decade of collective efforts. J Proteomics 75:4883–4892

    Article  CAS  PubMed  Google Scholar 

  28. Goodwin RJ (2012) Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 75:4893–4911

    Article  CAS  PubMed  Google Scholar 

  29. Shimma S, Sugiura Y (2014) Effective sample preparations in imaging mass spectrometry. Mass Spectrom 3:S0029

    Article  Google Scholar 

  30. Thomas A, Chaurand P (2014) Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6:967–982

    Article  CAS  PubMed  Google Scholar 

  31. Jungmann JH, Heeren RM (2012) Emerging technologies in mass spectrometry imaging. J Proteomics 75:5077–5092

    Article  CAS  PubMed  Google Scholar 

  32. Gessel MM, Norris JL, Caprioli RM (2014) MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics 107:71–82

    Article  CAS  PubMed  Google Scholar 

  33. Trim PJ, Djidja MC, Muharib T, Cole LM, Flinders B, Carolan VA, Francese S, Clench MR (2012) Instrumentation and software for mass spectrometry imaging—making the most of what you've got. J Proteomics 75:4931–4940

    Article  CAS  PubMed  Google Scholar 

  34. Jones EA, Deininger SO, Hogendoorn PC, Deelder AM, McDonnell LA (2012) Imaging mass spectrometry statistical analysis. J Proteomics 75:4962–4989

    Article  CAS  PubMed  Google Scholar 

  35. Alexandrov T (2012) MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 13(Suppl 16):S11

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Trede D, Kobarg JH, Oetjen J, Thiele H, Maass P, Alexandrov T (2012) On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data. J Integr Bioinform 9:189

    PubMed  Google Scholar 

  37. Aichler M, Walch A (2015) MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest 95:422–431

    Article  CAS  PubMed  Google Scholar 

  38. Minerva L, Ceulemans A, Baggerman G, Arckens L (2012) MALDI MS imaging as a tool for biomarker discovery: methodological challenges in a clinical setting. Proteomics Clin Appl 6:581–595

    Article  CAS  PubMed  Google Scholar 

  39. Schwamborn K (2012) Imaging mass spectrometry in biomarker discovery and validation. J Proteomics 75:4990–4998

    Article  CAS  PubMed  Google Scholar 

  40. Kriegsmann J, Kriegsmann M, Casadonte R (2015) MALDI TOF imaging mass spectrometry in clinical pathology: a valuable tool for cancer diagnostics (review). Int J Oncol 46:893–906

    CAS  PubMed  Google Scholar 

  41. Schone C, Hofler H, Walch A (2013) MALDI imaging mass spectrometry in cancer research: combining proteomic profiling and histological evaluation. Clin Biochem 46:539–545

    Article  PubMed  Google Scholar 

  42. Lanni EJ, Rubakhin SS, Sweedler JV (2012) Mass spectrometry imaging and profiling of single cells. J Proteomics 75:5036–5051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Franck J, Arafah K, Barnes A, Wisztorski M, Salzet M, Fournier I (2009) Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: Using microspotting. Anal Chem 81:8193–8202

    Article  CAS  PubMed  Google Scholar 

  44. van de Ven S, Bemis KD, Lau K, Adusumilli R, Kota U, Stolowitz M, Vitek O, Mallick P, Gambhir SS (2016) Protein biomarkers on tissue as imaged via MALDI mass spectrometry: a systematic approach to study the limits of detection. Proteomics, published online 11 Mar 2016, doi:10.1002/pmic.201500515

  45. Yang J, Caprioli RM (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution. Anal Chem 83:5728–5734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bouschen W, Schulz O, Eikel D, Spengler B (2010) Matrix vapor deposition/recrystallization and dedicated spray preparation for high-resolution scanning microprobe matrix-assisted laser desorption/ionization imaging mass spectrometry (SMALDI-MS) of tissue and single cells. Rapid Commun Mass Spectrom 24:355–364

    Article  CAS  PubMed  Google Scholar 

  47. Yang J, Caprioli RM (2014) Matrix pre-coated targets for high throughput MALDI imaging of proteins. J Mass Spectrom 49:417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang X, Han J, Hardie DB, Yang J, Borchers CH (2016) The use of matrix coating assisted by an electric field (MCAEF) to enhance mass spectrometric imaging of human prostate cancer biomarkers. J Mass Spectrom 51:86–95

    Article  CAS  PubMed  Google Scholar 

  49. Lemaire R, Wisztorski M, Desmons A, Tabet JC, Day R, Salzet M, Fournier I (2006) MALDI-MS direct tissue analysis of proteins: improving signal sensitivity using organic treatments. Anal Chem 78:7145–7153

    Article  CAS  PubMed  Google Scholar 

  50. Grey AC, Chaurand P, Caprioli RM, Schey KL (2009) MALDI imaging mass spectrometry of integral membrane proteins from ocular lens and retinal tissue. J Proteome Res 8:3278–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Franck J, Longuespee R, Wisztorski M, Van Remoortere A, Van Zeijl R, Deelder A, Salzet M, McDonnell L, Fournier I (2010) MALDI mass spectrometry imaging of proteins exceeding 30,000 daltons. Med Sci Monit 16:BR293–BR299

    CAS  PubMed  Google Scholar 

  52. Stauber J, Ayed ME, Wisztorski M, Salzet M, Fournier I (2010) Specific MALDI-MSI: Tag-Mass. Methods Mol Biol 656:339–361

    Article  CAS  PubMed  Google Scholar 

  53. Lemaire R, Menguellet SA, Stauber J, Marchaudon V, Lucot JP, Collinet P, Farine MO, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134

    Article  CAS  PubMed  Google Scholar 

  54. Liu R, Li Q, Smith LM (2014) Detection of large ions in time-of-flight mass spectrometry: effects of ion mass and acceleration voltage on microchannel plate detector response. J Am Soc Mass Spectrom 25:1374–1383

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Remoortere A, van Zeijl RJ, van den Oever N, Franck J, Longuespee R, Wisztorski M, Salzet M, Deelder AM, Fournier I, McDonnell LA (2010) MALDI imaging and profiling MS of higher mass proteins from tissue. J Am Soc Mass Spectrom 21:1922–1929

    PubMed  Google Scholar 

  56. Ellis SR, Jungmann JH, Smith DF, Soltwisch J, Heeren RM (2013) Enhanced detection of high-mass proteins by using an active pixel detector. Angew Chem Int Ed Engl 52:11261–11264

    Article  CAS  PubMed  Google Scholar 

  57. Jungmann JH, Heeren RM (2013) Detection systems for mass spectrometry imaging: a perspective on novel developments with a focus on active pixel detectors. Rapid Commun Mass Spectrom 27:1–23

    Article  CAS  PubMed  Google Scholar 

  58. Li J, Inutan ED, Wang B, Lietz CB, Green DR, Manly CD, Richards AL, Marshall DD, Lingenfelter S, Ren Y, Trimpin S (2012) Matrix assisted ionization: new aromatic and nonaromatic matrix compounds producing multiply charged lipid, peptide, and protein ions in the positive and negative mode observed directly from surfaces. J Am Soc Mass Spectrom 23:1625–1643

    Article  CAS  PubMed  Google Scholar 

  59. Debois D, Smargiasso N, Demeure K, Asakawa D, Zimmerman TA, Quinton L, De Pauw E (2013) MALDI in-source decay, from sequencing to imaging. Top Curr Chem 331:117–141

    Article  CAS  PubMed  Google Scholar 

  60. Asakawa D, Calligaris D, Zimmerman TA, De Pauw E (2013) In-source decay during matrix-assisted laser desorption/ionization combined with the collisional process in an FTICR mass spectrometer. Anal Chem 85:7809–7817

    Article  CAS  PubMed  Google Scholar 

  61. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101:9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Inutan ED, Richards AL, Wager-Miller J, Mackie K, McEwen CN, Trimpin S (2011) Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation. Mol Cell Proteomics 10:M110 000760

    Article  PubMed  Google Scholar 

  63. Spraggins JM, Rizzo DG, Moore JL, Rose KL, Hammer ND, Skaar EP, Caprioli RM (2015) MALDI FTICR IMS of intact proteins: using mass accuracy to link protein images with proteomics data. J Am Soc Mass Spectrom 26:974–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schober Y, Schramm T, Spengler B, Rompp A (2011) Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides. Rapid Commun Mass Spectrom 25:2475–2483

    Article  CAS  PubMed  Google Scholar 

  65. Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, Wiel IM, Wisztorski M, Fournier I, Heeren RM (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. J Am Soc Mass Spectrom 21:338–347

    Article  CAS  PubMed  Google Scholar 

  66. Gustafsson JO, Eddes JS, Meding S, Koudelka T, Oehler MK, McColl SR, Hoffmann P (2012) Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS. J Proteomics 75:5093–5105

    Article  CAS  PubMed  Google Scholar 

  67. Miladinovic SM, Fornelli L, Lu Y, Piech KM, Girault HH, Tsybin YO (2012) In-spray supercharging of peptides and proteins in electrospray ionization mass spectrometry. Anal Chem 84:4647–4651

    Article  CAS  PubMed  Google Scholar 

  68. McDonnell LA, Walch A, Stoeckli M, Corthals GL (2014) MSiMass list: a public database of identifications for protein MALDI MS imaging. J Proteome Res 13:1138–1142

    Article  CAS  PubMed  Google Scholar 

  69. Meding S, Martin K, Gustafsson OJ, Eddes JS, Hack S, Oehler MK, Hoffmann P (2013) Tryptic peptide reference data sets for MALDI imaging mass spectrometry on formalin-fixed ovarian cancer tissues. J Proteome Res 12:308–315

    Article  CAS  PubMed  Google Scholar 

  70. Thakur D, Rejtar T, Wang D, Bones J, Cha S, Clodfelder-Miller B, Richardson E, Binns S, Dahiya S, Sgroi D, Karger BL (2011) Microproteomic analysis of 10,000 laser captured microdissected breast tumor cells using short-range sodium dodecyl sulfate-polyacrylamide gel electrophoresis and porous layer open tubular liquid chromatography tandem mass spectrometry. J Chromatogr A 1218:8168–8174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Quanico J, Franck J, Dauly C, Strupat K, Dupuy J, Day R, Salzet M, Fournier I, Wisztorski M (2013) Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J Proteomics 79:200–218

    Article  CAS  PubMed  Google Scholar 

  72. Harris GA, Nicklay JJ, Caprioli RM (2013) Localized in situ hydrogel-mediated protein digestion and extraction technique for on-tissue analysis. Anal Chem 85:2717–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Franck J, Quanico J, Wisztorski M, Day R, Salzet M, Fournier I (2013) Quantification-based mass spectrometry imaging of proteins by parafilm assisted microdissection. Anal Chem 85:8127–8134

    Article  CAS  PubMed  Google Scholar 

  74. Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I, Salzet M (2009) MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics 8:2023–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fisher R, Pusztai L, Swanton C (2013) Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer 108:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Turtoi A, Blomme A, Castronovo V (2015) Intratumoral heterogeneity and consequences for targeted therapies. Bull Cancer 102:17–23

    Article  PubMed  Google Scholar 

  77. Jones EA, van Remoortere A, van Zeijl RJ, Hogendoorn PC, Bovee JV, Deelder AM, McDonnell LA (2011) Multiple statistical analysis techniques corroborate intratumor heterogeneity in imaging mass spectrometry datasets of myxofibrosarcoma. PLoS One 6:e24913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Deininger SO, Ebert MP, Futterer A, Gerhard M, Rocken C (2008) MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 7:5230–5236

    Article  CAS  PubMed  Google Scholar 

  79. Le Faouder J, Laouirem S, Alexandrov T, Ben-Harzallah S, Leger T, Albuquerque M, Bedossa P, Paradis V (2014) Tumoral heterogeneity of hepatic cholangiocarcinomas revealed by MALDI imaging mass spectrometry. Proteomics 14:965–972

    Article  CAS  PubMed  Google Scholar 

  80. Flatley B, Malone P, Cramer R (2014) MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim Biophys Acta 1844:940–949

    Article  CAS  PubMed  Google Scholar 

  81. Pagni F, De Sio G, Garancini M, Scardilli M, Chinello C, Smith AJ, Bono F, Leni D, Magni F (2016) Proteomics in thyroid cytopathology: relevance of MALDI-Imaging in distinguishing malignant from benign lesions. Proteomics, published online 31 Mar 2016, doi:10.1002/pmic.201500448

  82. Calligaris D, Feldman DR, Norton I, Olubiyi O, Changelian AN, Machaidze R, Vestal ML, Laws ER, Dunn IF, Santagata S, Agar NY (2015) MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. Proc Natl Acad Sci U S A 112:9978–9983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Groseclose MR, Massion PP, Chaurand P, Caprioli RM (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 8:3715–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Quaas A, Bahar AS, von Loga K, Seddiqi AS, Singer JM, Omidi M, Kraus O, Kwiatkowski M, Trusch M, Minner S, Burandt E, Stahl P, Wilczak W, Wurlitzer M, Simon R, Sauter G, Marx A, Schluter H (2013) MALDI imaging on large-scale tissue microarrays identifies molecular features associated with tumour phenotype in oesophageal cancer. Histopathology 63:455–462

    PubMed  Google Scholar 

  85. Steurer S, Borkowski C, Odinga S, Buchholz M, Koop C, Huland H, Becker M, Witt M, Trede D, Omidi M, Kraus O, Bahar AS, Seddiqi AS, Singer JM, Kwiatkowski M, Trusch M, Simon R, Wurlitzer M, Minner S, Schlomm T, Sauter G, Schluter H (2013) MALDI mass spectrometric imaging based identification of clinically relevant signals in prostate cancer using large-scale tissue microarrays. Int J Cancer 133:920–928

    Article  CAS  PubMed  Google Scholar 

  86. Steurer S, Seddiqi AS, Singer JM, Bahar AS, Eichelberg C, Rink M, Dahlem R, Huland H, Sauter G, Simon R, Minner S, Burandt E, Stahl PR, Schlomm T, Wurlitzer M, Schluter H (2014) MALDI imaging on tissue microarrays identifies molecular features associated with renal cell cancer phenotype. Anticancer Res 34:2255–2261

    PubMed  Google Scholar 

  87. Steurer S, Singer JM, Rink M, Chun F, Dahlem R, Simon R, Burandt E, Stahl P, Terracciano L, Schlomm T, Wagner W, Hoppner W, Omidi M, Kraus O, Kwiatkowski M, Doh O, Fisch M, Soave A, Sauter G, Wurlitzer M, Schluter H, Minner S (2014) MALDI imaging-based identification of prognostically relevant signals in bladder cancer using large-scale tissue microarrays. Urol Oncol 32:1225–1233

    Article  PubMed  Google Scholar 

  88. Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Lokman NA, Zhang C, Anderson L, Scurry J, Leung Y, Stewart CJ, Carter J, Kaur G, Oehler MK, Hoffmann P (2016) Maldi imaging of primary endometrial cancers reveals proteins associated with lymph node metastasis. Proteomics, published online 9 Apr 2016, doi:10.1002/pmic.201500455

  89. Casadonte R, Kriegsmann M, Zweynert F, Friedrich K, Baretton G, Otto M, Deininger SO, Paape R, Belau E, Suckau D, Aust D, Pilarsky C, Kriegsmann J (2014) Imaging mass spectrometry to discriminate breast from pancreatic cancer metastasis in formalin-fixed paraffin-embedded tissues. Proteomics 14:956–964

    Article  CAS  PubMed  Google Scholar 

  90. Chung L, Phillips L, Lin MZ, Moore K, Marsh DJ, Boyle FM, Baxter RC (2015) A novel truncated form of S100P predicts disease-free survival in patients with lymph node positive breast cancer. Cancer Lett 368:64–70

    Article  CAS  PubMed  Google Scholar 

  91. Gemoll T, Strohkamp S, Schillo K, Thorns C, Habermann JK (2015) MALDI-imaging reveals thymosin beta-4 as an independent prognostic marker for colorectal cancer. Oncotarget 6:43869–43880

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harris TM, Du P, Kawachi N, Belbin TJ, Wang Y, Schlecht NF, Ow TJ, Keller CE, Childs GJ, Smith RV, Angeletti RH, Prystowsky MB, Lim J (2015) Proteomic analysis of oral cavity squamous cell carcinoma specimens identifies patient outcome-associated proteins. Arch Pathol Lab Med 139:494–507

    Article  PubMed  Google Scholar 

  93. McDonnell LA, Heeren RM, Andren PE, Stoeckli M, Corthals GL (2012) Going forward: Increasing the accessibility of imaging mass spectrometry. J Proteomics 75:5113–5121

    Article  CAS  PubMed  Google Scholar 

  94. Sarsby J, Martin NJ, Lalor PF, Bunch J, Cooper HJ (2014) Top-down and bottom-up identification of proteins by liquid extraction surface analysis mass spectrometry of healthy and diseased human liver tissue. J Am Soc Mass Spectrom 25:1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wisztorski M, Desmons A, Quanico J, Fatou B, Gimeno JP, Franck J, Salzet M, Fournier I (2016) Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis. Proteomics, published online 13 Apr 2016, doi:10.1002/pmic.201500508

  96. Wisztorski M, Fatou B, Franck J, Desmons A, Farre I, Leblanc E, Fournier I, Salzet M (2013) Microproteomics by liquid extraction surface analysis: application to FFPE tissue to study the fimbria region of tubo-ovarian cancer. Proteomics Clin Appl 7:234–240

    Article  CAS  PubMed  Google Scholar 

  97. Quanico J, Franck J, Gimeno JP, Sabbagh R, Salzet M, Day R, Fournier I (2015) Parafilm-assisted microdissection: a sampling method for mass spectrometry-based identification of differentially expressed prostate cancer protein biomarkers. Chem Commun (Camb) 51:4564–4567

    Article  CAS  Google Scholar 

  98. Prentice BM, Chumbley CW, Caprioli RM (2015) High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J Mass Spectrom 50:703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu X, Hummon AB (2015) Mass spectrometry imaging of therapeutics from animal models to three-dimensional cell cultures. Anal Chem 87:9508–9519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Fournier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Quanico, J., Franck, J., Wisztorski, M., Salzet, M., Fournier, I. (2017). Progress and Potential of Imaging Mass Spectrometry Applied to Biomarker Discovery. In: Kobeissy, F., Stevens, Jr., S. (eds) Neuroproteomics. Methods in Molecular Biology, vol 1598. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6952-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6952-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6950-0

  • Online ISBN: 978-1-4939-6952-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics