Skip to main content

Engineering and Characterizing Synthetic Protease Sensors and Switches

  • Protocol
  • First Online:
Synthetic Protein Switches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1596))

Abstract

Proteases are finding an increasing number of applications as molecular tools and reporters in biotechnology and basic research. Proteases are also increasingly incorporated into synthetic genetic signaling circuits equipping cells with tailored new functions. In the majority of cases however, proteases are employed in constitutively active forms which limits their utility and application as molecular sensors. The following chapter provides a detailed experimental protocol for converting constitutively active proteases into regulated protease receptors. Such receptors can potentially sense, transduce, and amplify any molecular input, thereby opening up a range of new applications in basic research, biotechnology, and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neil D. Rawlings GS (eds) (2013). Handbook of proteolytic enzymes, Academic Press, Cambridge, Massachusetts.

    Google Scholar 

  2. Stein V, Alexandrov K (2014) Protease-based synthetic sensing and signal amplification. Proc Natl Acad Sci U S A 111:15934–15939. doi:10.1073/pnas.1405220111

    Article  CAS  Google Scholar 

  3. Stein V, Alexandrov K (2015) Synthetic protein switches: design principles and applications. Trends Biotechnol 33:101–110. doi:10.1016/j.tibtech.2014.11.010

    Article  CAS  Google Scholar 

  4. Cesaratto F, Burrone OR, Petris G (2016) Tobacco etch virus protease: a shortcut across biotechnologies. J Biotechnol 231:239–249. doi:10.1016/j.jbiotec.2016.06.012

    Article  CAS  Google Scholar 

  5. Ingallinella P, Bianchi E, Ingenito R et al (2000) Optimization of the P′-region of peptide inhibitors of hepatitis C virus NS3/4A protease. Biochemistry 39:12898–12906. doi:10.1021/bi001590g

    Article  CAS  Google Scholar 

  6. Huang J, Makabe K, Biancalana M et al (2009) Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution. J Mol Biol 392:1221–1231. doi:10.1016/j.jmb.2009.07.067

    Article  CAS  Google Scholar 

  7. Huang J, Koide A, Makabe K, Koide S (2008) Design of protein function leaps by directed domain interface evolution. Proc Natl Acad Sci U S A 105:6578–6583. doi:10.1073/pnas.0801097105

    Article  CAS  Google Scholar 

  8. Xu L, Li S, Ren C et al (2006) Heat-inducible autolytic vector for high-throughput screening. Biotechniques 41:319–323. doi:10.2144/000112219

    Article  CAS  Google Scholar 

  9. Li S, Xu L, Hua H et al (2007) A set of UV-inducible autolytic vectors for high throughput screening. J Biotechnol 127:647–652. doi:10.1016/j.jbiotec.2006.07.030

    Article  CAS  Google Scholar 

  10. Studier FW (2005) Protein production by auto-induction in high-density shaking cultures. Protein Expr Purif 41:207–234. doi:10.1016/j.pep.2005.01.016

    Article  CAS  Google Scholar 

  11. Kapust RB, Tözsér J, Fox JD et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng 14:993–1000. doi:10.1093/protein/14.12.993

    Article  CAS  Google Scholar 

  12. Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674. doi:10.1110/ps.8.8.1668

    Article  CAS  Google Scholar 

  13. Raran-Kurussi S, Waugh DS (2012) The ability to enhance the solubility of its fusion partners is an intrinsic property of maltose-binding protein but their folding is either spontaneous or chaperone-mediated. PLoS One 7:e49589. doi:10.1371/journal.pone.0049589

    Article  CAS  Google Scholar 

  14. Stein V, Hollfelder F (2009) An efficient method to assemble linear DNA templates for in vitro screening and selection systems. Nucleic Acids Res. doi:10.1093/nar/gkp589

    Google Scholar 

  15. Kapust RB, Tozser J, Copeland TD, Waugh DS (2002) The P1’ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955. doi:10.1016/S0006-291X(02)00574-0

    Article  CAS  Google Scholar 

  16. Posern G, Zheng J, Knudsen BS et al (1998) Development of highly selective SH3 binding peptides for Crk and CRKL which disrupt Crk-complexes with DOCK180, SoS and C3G. Oncogene 16:1903–1912. doi:10.1038/sj.onc.1201714

    Article  CAS  Google Scholar 

  17. Cai Z, Xu W, Xue R, Lin Z (2008) Facile, reagentless and in situ release of Escherichia coli intracellular enzymes by heat-inducible autolytic vector for high-throughput screening. Protein Eng Des Sel 21:681–687. doi:10.1093/protein/gzn049

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council Discovery Project Grant DP1094080 to KA and in part by National Breast Cancer Foundation Innovator Grant. This research was also supported by Movember through Australia’s Prostate Cancer Foundation Research Program to KA and VS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viktor Stein or Kirill Alexandrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Stein, V., Alexandrov, K. (2017). Engineering and Characterizing Synthetic Protease Sensors and Switches. In: Stein, V. (eds) Synthetic Protein Switches. Methods in Molecular Biology, vol 1596. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6940-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6940-1_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6938-8

  • Online ISBN: 978-1-4939-6940-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics