Skip to main content

Generating Recombinant Vesicular Stomatitis Viruses for Use as Vaccine Platforms

  • Protocol
  • First Online:
Recombinant Virus Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1581))

Abstract

The unique properties of vesicular stomatitis virus (VSV) make it a promising vaccine platform. With the advent of plasmid-based approaches to generate recombinant VSV viruses that express glycoproteins of other viruses, researchers now have the means to generate vaccine candidates targeting a variety of human pathogens. This chapter gives a general overview of the workings of VSV as a vaccine platform and provides a detailed protocol for the generation of recombinant VSV from plasmids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marzi A, Feldmann F, Geisbert TW, Feldmann H, Safronetz D (2015) Vesicular stomatitis virus-based vaccines against Lassa and Ebola viruses. Emerg Infect Dis 21(2):305–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10(5):210–216

    Article  CAS  PubMed  Google Scholar 

  3. Geisbert TW, Feldmann H (2011) Recombinant vesicular stomatitis virus-based vaccines against Ebola and Marburg virus infections. J Infect Dis 204(Suppl):S1075–S1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuchs JD, Frank I, Elizaga ML, Allen M, Frahm N, Kochar N, Li S, Edupuganti S, Kalams SA, Tomaras GD, Sheets R, Pensiero M, Tremblay MA, Higgins TJ, Latham T, Egan MA, Clarke DK, Eldridge JH, Mulligan M, Rouphael N, Estep S, Rybczyk K, Dunbar D, Buchbinder S, Wagner T, Isbell R, Chinnell V, Bae J, Escamilla G, Tseng J, Fair R, Ramirez S, Broder G, Briesemeister L, Ferrara A (2015) First-in-human evaluation of the safety and immunogenicity of a recombinant vesicular stomatitis virus human immunodeficiency virus-1 gag vaccine (HVTN 090). Open Forum Infect Dis 2(3):ofv082

    PubMed  PubMed Central  Google Scholar 

  5. Henao-Restrepo AM, Longini IM, Egger M, Dean NE, Edmunds WJ, Camacho A, Carroll MW, Doumbia M, Draguez B, Duraffour S, Enwere G, Grais R, Gunther S, Hossmann S, Kondé MK, Kone S, Kuisma E, Levine MM, Mandal S, Norheim G, Riveros X, Soumah A, Trelle S, Vicari AS, Watson CH, Kéïta S, Kieny MP, Røttingen J-A (2015) Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet 386(9996):857–866

    Article  CAS  PubMed  Google Scholar 

  6. Huttner A, Dayer J-A, Yerly S, Combescure C, Auderset F, Desmeules J, Eickmann M, Finckh A, Goncalves AR, Hooper JW, Kaya G, Krähling V, Kwilas S, Lemaître B, Matthey A, Silvera P, Becker S, Fast PE, Moorthy V, Kieny MP, Kaiser L, Siegrist C-A (2015) The effect of dose on the safety and immunogenicity of the VSV Ebola candidate vaccine: a randomised double-blind, placebo-controlled phase 1/2 trial. Lancet Infect Dis 15(10):1156–1166

    Article  CAS  PubMed  Google Scholar 

  7. Mire CE, Geisbert JB, Versteeg KM, Mamaeva N, Agans KN, Geisbert TW, Connor JH (2015) A single-vector, single-injection trivalent filovirus vaccine: proof of concept study in outbred guinea pigs. J Infect Dis 212(Suppl):S384–S388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Whitt MA (2010) Generation of VSV pseudotypes using recombinant ΔG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to vaccines. J Virol Methods 169(2):365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83(21):8122–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buchholz UJ, Finke S, Conzelmann K-K (1999) Generation of Bovine Respiratory Syncytial Virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ (2001) Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol 3(4):513–517

    CAS  PubMed  Google Scholar 

  13. Knipe DM, Howley PM (2007) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  14. Barr JN, Whelan SPJ, Wertz GW (2002) Transcriptional control of the RNA-dependent RNA polymerase of vesicular stomatitis virus. Biochim Biophys Acta 1577:337–353

    Article  CAS  PubMed  Google Scholar 

  15. Isaacs SN (ed) (2004) Vaccinia virus and poxvirology: methods in molecular biology, vol 269. Hamana Press, Totowa

    Google Scholar 

  16. Ruedas JB, Perrault J (2009) Insertion of enhanced green fluorescent protein in a hinge region of vesicular stomatitis virus L polymerase protein creates a temperature-sensitive virus that displays no virion-associated polymerase activity in vitro. J Virol 83(23):12241–12252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruedas JB, Perrault J (2014) Putative domain-domain interactions in the vesicular stomatitis virus L polymerase protein appendage region. J Virol 88(24):14458–14466

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding through NIH R21 AI121933 and NIH RO1 to JHC. We also acknowledge support through the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award UC6AI058618.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Ruedas, J.B., Connor, J.H. (2017). Generating Recombinant Vesicular Stomatitis Viruses for Use as Vaccine Platforms. In: Ferran, M., Skuse, G. (eds) Recombinant Virus Vaccines. Methods in Molecular Biology, vol 1581. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6869-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6869-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6867-1

  • Online ISBN: 978-1-4939-6869-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics