Skip to main content

Analysis of PAMP-Triggered ROS Burst in Plant Immunity

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1578))

Abstract

The plant perception of pathogen-associated molecular patterns triggers a plethora of cellular immune responses. One of these responses is a rapid and transient burst of reactive oxygen species (ROS) mediated by plasma membrane-localized NADPH oxidases. The ROS burst requires a functional receptor complex and the contribution of several additional regulatory components. In laboratory conditions, the ROS burst can be detected a few minutes after the treatment with an immunogenic microbial elicitor. For these reasons, the elicitor-triggered ROS burst has been often exploited as readout to probe the contribution of plant components to early immune responses. Here, we describe a detailed protocol for the measurement of elicitor-triggered ROS burst in a simple, fast, and easy manner.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Macho AP, Zipfel C (2014) Plant PRRs and the activation of innate immune signaling. Mol Cell 54:263–272

    Article  CAS  PubMed  Google Scholar 

  2. Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

  3. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  5. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15

    Article  CAS  PubMed  Google Scholar 

  6. Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56(8):1472–1480

    Article  CAS  PubMed  Google Scholar 

  7. Nühse TS, Bottrill AR, Jones AME, Peck SC (2007) Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51(5):931–940

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, Zhou J-M (2007) A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe 1(3):175–185

    Article  CAS  PubMed  Google Scholar 

  9. Boutrot F, Segonzac C, Chang KN, Qiao H, Ecker JR, Zipfel C, Rathjen JP (2010) Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc Natl Acad Sci U S A 107(32):14502–14507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hann DR, Dominguez-Ferreras A, Motyka V, Dobrev PI, Schornack S, Jehle A, Felix G, Chinchilla D, Rathjen JP, Boller T (2014) The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol 201(2):585–598

    Article  CAS  PubMed  Google Scholar 

  11. Macho AP, Boutrot F, Rathjen JP, Zipfel C (2012) ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiol 159(4):1845–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19(5):423–429

    Article  CAS  PubMed  Google Scholar 

  13. Monaghan J, Matschi S, Shorinola O, Rovenich H, Matei A, Segonzac C, Malinovsky FG, Rathjen JP, MacLean D, Romeis T, Zipfel C (2014) The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16(5):605–615

    Article  CAS  PubMed  Google Scholar 

  14. Smith JM, Heese A (2014) Rapid bioassay to measure early reactive oxygen species production in Arabidopsis leave tissue in response to living Pseudomonas syringae. Plant Methods 10(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  15. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18(3):265–276

    Article  CAS  PubMed  Google Scholar 

  16. Mueller K, Chinchilla D, Albert M, Jehle AK, Kalbacher H, Boller T, Felix G (2012) Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations. Plant Cell 24(8):3193–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lozano-Duran R, Bourdais G, He SY, Robatzek S (2014) The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytol 202(1):259–269

    Article  CAS  PubMed  Google Scholar 

  18. Macho AP, Schwessinger B, Ntoukakis V, Brutus A, Segonzac C, Roy S, Kadota Y, Oh MH, Sklenar J, Derbyshire P, Lozano-Duran R, Malinovsky FG, Monaghan J, Menke FL, Huber SC, He SY, Zipfel C (2014) A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation. Science 343(6178):1509–1512

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rosa Lozano-Durán for critical reading and suggestions on this manuscript. We also thank members of the Macho laboratory, past and present members of Cyril Zipfel’s group (The Sainsbury Laboratory, UK), and several other groups for their contribution to the optimization of this protocol over the years. Research in the Macho laboratory is supported by the Shanghai Center for Plant Stress Biology (Chinese Academy of Sciences), and the Chinese 1000 Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto P. Macho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sang, Y., Macho, A.P. (2017). Analysis of PAMP-Triggered ROS Burst in Plant Immunity. In: Shan, L., He, P. (eds) Plant Pattern Recognition Receptors. Methods in Molecular Biology, vol 1578. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6859-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6859-6_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6858-9

  • Online ISBN: 978-1-4939-6859-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics