Skip to main content

Characterizing Glycoproteins by Mass Spectrometry in Campylobacter jejuni

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1512))

Abstract

The glycosylation systems of Campylobacter jejuni (C. jejuni) are considered archetypal examples of both N- and O-linked glycosylations in the field of bacterial glycosylation. The discovery and characterization of these systems both have revealed important biological insight into C. jejuni and have led to the refinement and enhancement of methodologies to characterize bacterial glycosylation. In general, mass spectrometry-based characterization has become the preferred methodology for the study of C. jejuni glycosylation because of its speed, sensitivity, and ability to enable both qualitative and quantitative assessments of glycosylation events. In these experiments the generation of insightful data requires the careful selection of experimental approaches and mass spectrometry (MS) instrumentation. As such, it is essential to have a deep understanding of the technologies and approaches used for characterization of glycosylation events. Here we describe protocols for the initial characterization of C. jejuni glycoproteins using protein-/peptide-centric approaches and discuss considerations that can enhance the generation of insightful data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  PubMed  Google Scholar 

  2. Eichler J, Adams MW (2005) Posttranslational protein modification in Archaea. Microbiol Mol Biol Rev 69(3):393–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Abu-Qarn M, Eichler J, Sharon N (2008) Not just for Eukarya anymore: protein glycosylation in bacteria and Archaea. Curr Opin Struct Biol 18(5):544–550. doi:10.1016/j.sbi.2008.06.010, S0959-440X(08)00098-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  4. Szymanski CM, Wren BW (2005) Protein glycosylation in bacterial mucosal pathogens. Nat Rev Microbiol 3(3):225–237

    Article  CAS  PubMed  Google Scholar 

  5. Nothaft H, Szymanski CM (2010) Protein glycosylation in bacteria: sweeter than ever. Nat Rev Microbiol 8(11):765–778. doi:10.1038/nrmicro2383

    Article  CAS  PubMed  Google Scholar 

  6. Nothaft H, Szymanski CM (2013) Bacterial protein N-glycosylation: new perspectives and applications. J Biol Chem 288(10):6912–6920. doi:10.1074/jbc.R112.417857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Iwashkiw JA, Vozza NF, Kinsella RL et al (2013) Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol Microbiol 89(1):14–28. doi:10.1111/mmi.12265

    Article  CAS  PubMed  Google Scholar 

  8. Iwashkiw JA, Seper A, Weber BS et al (2012) Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog 8(6):e1002758. doi:10.1371/journal.ppat.1002758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lithgow KV, Scott NE, Iwashkiw JA et al (2014) A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol Microbiol 92(1):116–37

    Article  CAS  PubMed  Google Scholar 

  10. Szymanski CM, Burr DH, Guerry P (2002) Campylobacter protein glycosylation affects host cell interactions. Infect Immun 70(4):2242–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howard SL, Jagannathan A, Soo EC et al (2009) Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect Immun 77(6):2544–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearson JS, Giogha C, Ong SY et al (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501(7466):247–251. doi:10.1038/nature12524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Breitling J, Aebi M (2013) N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb Perspect Biol 5(8):a013359. doi:10.1101/cshperspect.a013359

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jensen PH, Kolarich D, Packer NH (2010) Mucin-type O-glycosylation--putting the pieces together. FEBS J 277(1):81–94. doi:10.1111/j.1742-4658.2009.07429.x

    Article  CAS  PubMed  Google Scholar 

  15. Young NM, Brisson JR, Kelly J et al (2002) Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277(45):42530–42539

    Article  CAS  PubMed  Google Scholar 

  16. Morrison MJ, Imperiali B (2014) The renaissance of bacillosamine and its derivatives: pathway characterization and implications in pathogenicity. Biochemistry 53(4):624–638. doi:10.1021/bi401546r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott NE, Kinsella RL, Edwards AV et al (2014) Diversity within the O-linked protein glycosylation systems of Acinetobacter species. Mol Cell Proteomics. doi:10.1074/mcp.M114.038315

    PubMed  PubMed Central  Google Scholar 

  18. Nothaft H, Scott NE, Vinogradov E et al (2012) Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol Cell Proteomics 11(11):1203–1219. doi:10.1074/mcp.M112.021519

    Article  PubMed  PubMed Central  Google Scholar 

  19. Deeb SJ, Cox J, Schmidt-Supprian M et al (2014) N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse large B-cell lymphoma subtypes. Mol Cell Proteomics 13(1):240–251. doi:10.1074/mcp.M113.033977

    Article  CAS  PubMed  Google Scholar 

  20. Anugraham M, Jacob F, Nixdorf S et al (2014) Specific glycosylation of membrane proteins in epithelial ovarian cancer cell lines: glycan structures reflect gene expression and DNA methylation status. Mol Cell Proteomics 13(9):2213–2232. doi:10.1074/mcp.M113.037085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Z, Halim A, Narimatsu Y et al (2014) The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy. Mol Cell Proteomics 13(12):3224–3235. doi:10.1074/mcp.M114.041541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vester-Christensen MB, Halim A, Joshi HJ et al (2013) Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. Proc Natl Acad Sci U S A 110(52):21018–21023. doi:10.1073/pnas.1313446110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parker BL, Thaysen-Andersen M, Solis N et al (2013) Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res 12(12):5791–5800. doi:10.1021/pr400783j

    Article  CAS  PubMed  Google Scholar 

  24. Schirm M, Schoenhofen IC, Logan SM et al (2005) Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Anal Chem 77(23):7774–7782

    Article  CAS  PubMed  Google Scholar 

  25. Thibault P, Logan SM, Kelly JF et al (2001) Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J Biol Chem 276(37):34862–34870

    Article  CAS  PubMed  Google Scholar 

  26. McNally DJ, Aubrey AJ, Hui JP et al (2007) Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. J Biol Chem 282(19):14463–75

    Article  CAS  PubMed  Google Scholar 

  27. Logan SM, Kelly JF, Thibault P et al (2002) Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Mol Microbiol 46(2):587–597

    Article  CAS  PubMed  Google Scholar 

  28. Goon S, Kelly JF, Logan SM et al (2003) Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol Microbiol 50(2):659–671

    Article  CAS  PubMed  Google Scholar 

  29. Ewing CP, Andreishcheva E, Guerry P (2009) Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. J Bacteriol 191(22):7086–7093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guerry P, Ewing CP, Schirm M et al (2006) Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol 60(2):299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karlyshev AV, Everest P, Linton D et al (2004) The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiol 150(Pt 6):1957–1964

    Article  CAS  Google Scholar 

  32. Logan SM, Trust TJ, Guerry P (1989) Evidence for posttranslational modification and gene duplication of Campylobacter flagellin. J Bacteriol 171(6):3031–3038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doig P, Kinsella N, Guerry P et al (1996) Characterization of a post-translational modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. Mol Microbiol 19(2):379–387

    Article  CAS  PubMed  Google Scholar 

  34. Champion OL, Gaunt MW, Gundogdu O et al (2005) Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. Proc Natl Acad Sci U S A 102(44):16043–16048. doi:10.1073/pnas.0503252102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parkhill J, Wren BW, Mungall K et al (2000) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403(6770):665–668. doi:10.1038/35001088

    Article  CAS  PubMed  Google Scholar 

  36. Schoenhofen IC, McNally DJ, Brisson JR et al (2006) Elucidation of the CMP-pseudaminic acid pathway in Helicobacter pylori: synthesis from UDP-N-acetylglucosamine by a single enzymatic reaction. Glycobiology 16(9):8C–14C. doi:10.1093/glycob/cwl010

    Article  CAS  PubMed  Google Scholar 

  37. Chou WK, Dick S, Wakarchuk WW et al (2005) Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J Biol Chem 280(43):35922–35928

    Article  CAS  PubMed  Google Scholar 

  38. Schoenhofen IC, McNally DJ, Vinogradov E et al (2006) Functional characterization of dehydratase/aminotransferase pairs from Helicobacter and Campylobacter: enzymes distinguishing the pseudaminic acid and bacillosamine biosynthetic pathways. J Biol Chem 281(2):723–732. doi:10.1074/jbc.M511021200

    Article  CAS  PubMed  Google Scholar 

  39. Schoenhofen IC, Vinogradov E, Whitfield DM et al (2009) The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology 19(7):715–725. doi:10.1093/glycob/cwp039

    Article  CAS  PubMed  Google Scholar 

  40. Zampronio CG, Blackwell G, Penn CW et al (2011) Novel glycosylation sites localized in Campylobacter jejuni flagellin FlaA by liquid chromatography electron capture dissociation tandem mass spectrometry. J Proteome Res. doi:10.1021/pr101021c

    PubMed  Google Scholar 

  41. Scott NE, Nothaft H, Edwards AV et al (2012) Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J Biol Chem 287(35):29384–29396. doi:10.1074/jbc.M112.380212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scott NE, Parker BL, Connolly AM et al (2011) Simultaneous glycan-peptide characterization using hydrophilic interaction chromatography and parallel fragmentation by CID, higher energy collisional dissociation, and electron transfer dissociation MS applied to the N-linked glycoproteome of Campylobacter jejuni. Mol Cell Proteomics 10(2):M000031–MCP000201. doi:10.1074/mcp.M000031-MCP201

    Article  PubMed  Google Scholar 

  43. Scott NE, Marzook NB, Cain JA et al (2014) Comparative proteomics and glycoproteomics reveal increased N-linked glycosylation and relaxed sequon specificity in Campylobacter jejuni NCTC11168 O. J Proteome Res 13(11):5136–5150. doi:10.1021/pr5005554

    Article  CAS  PubMed  Google Scholar 

  44. Szymanski CM, Yao R, Ewing CP et al (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32(5):1022–1030

    Article  CAS  PubMed  Google Scholar 

  45. Szymanski CM, Michael FS, Jarrell HC et al (2003) Detection of conserved N-linked glycans and phase-variable lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high resolution magic angle spinning NMR spectroscopy. J Biol Chem 278(27):24509–24520

    Article  CAS  PubMed  Google Scholar 

  46. Wacker M, Linton D, Hitchen PG et al (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793

    Article  CAS  PubMed  Google Scholar 

  47. Nita-Lazar M, Wacker M, Schegg B et al (2005) The N-X-S/T consensus sequence is required but not sufficient for bacterial N-linked protein glycosylation. Glycobiology 15(4):361–367

    Article  CAS  PubMed  Google Scholar 

  48. Kowarik M, Young NM, Numao S et al (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9)

    Google Scholar 

  49. Schwarz F, Lizak C, Fan YY et al (2011) Relaxed acceptor site specificity of bacterial oligosaccharyltransferase in vivo. Glycobiology 21(1):45–54. doi:10.1093/glycob/cwq130

    Article  CAS  PubMed  Google Scholar 

  50. Ielmini MV, Feldman MF (2011) Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology 6:734–742

    Article  Google Scholar 

  51. Lizak C, Gerber S, Michaud G et al (2013) Unexpected reactivity and mechanism of carboxamide activation in bacterial N-linked protein glycosylation. Nat Commun 4:2627. doi:10.1038/ncomms3627

    Article  PubMed  Google Scholar 

  52. Gerber S, Lizak C, Michaud G et al (2013) Mechanism of bacterial oligosaccharyltransferase: in vitro quantification of sequon binding and catalysis. J Biol Chem 288(13):8849–8861. doi:10.1074/jbc.M112.445940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ulasi GN, Creese AJ, Hui SX et al (2015) Comprehensive mapping of O-glycosylation in flagellin from Campylobacter jejuni 11168: a multi-enzyme differential ion mobility mass spectrometry approach. Proteomics. doi:10.1002/pmic.201400533

    PubMed  PubMed Central  Google Scholar 

  54. Whitworth GE, Imperiali B (2015) Selective biochemical labeling of Campylobacter jejuni cell-surface glycoconjugates. Glycobiology. doi:10.1093/glycob/cwv016

    PubMed  PubMed Central  Google Scholar 

  55. Ding W, Nothaft H, Szymanski CM et al (2009) Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 8(9):2170–2185. doi:10.1074/mcp.M900088-MCP200, M900088-MCP200 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Linton D, Allan E, Karlyshev AV et al (2002) Identification of N-acetylgalactosamine-containing glycoproteins PEB3 and CgpA in Campylobacter jejuni. Mol Microbiol 43(2):497–508

    Article  CAS  PubMed  Google Scholar 

  57. Scott NE, Bogema DR, Connolly AM et al (2009) Mass spectrometric characterization of the surface-associated 42 kDa lipoprotein JlpA as a glycosylated antigen in strains of Campylobacter jejuni. J Proteome Res. doi:10.1021/pr900544x

    PubMed  Google Scholar 

  58. Rappsilber J, Ishihama Y, Mann M (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal Chem 75(3):663–670

    Article  CAS  PubMed  Google Scholar 

  59. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. doi:10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  60. Thompson A, Schafer J, Kuhn K et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  61. Boersema PJ, Raijmakers R, Lemeer S et al (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4(4):484–494. doi:10.1038/nprot.2009.21, nprot.2009.21 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Kollipara L, Zahedi RP (2013) Protein carbamylation: in vivo modification or in vitro artefact? Proteomics 13(6):941–944. doi:10.1002/pmic.201200452

    Article  CAS  PubMed  Google Scholar 

  63. Dedvisitsakul P, Jacobsen S, Svensson B et al (2014) Glycopeptide enrichment using a combination of ZIC-HILIC and cotton wool for exploring the glycoproteome of wheat flour albumins. J Proteome Res. doi:10.1021/pr401282r

    PubMed  Google Scholar 

  64. Mysling S, Palmisano G, Hojrup P et al (2010) Utilizing ion-pairing hydrophilic interaction chromatography solid phase extraction for efficient glycopeptide enrichment in glycoproteomics. Anal Chem 82(13):5598–5609. doi:10.1021/ac100530w

    Article  CAS  PubMed  Google Scholar 

  65. Cristobal A, Hennrich ML, Giansanti P et al (2012) In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis. Analyst 137(15):3541–3548. doi:10.1039/c2an35445d

    Article  CAS  PubMed  Google Scholar 

  66. Wisniewski JR, Gaugaz FZ (2015) Fast and sensitive total protein and peptide assays for proteomic analysis. Anal Chem 87(8):4110–4116. doi:10.1021/ac504689z

    Article  CAS  PubMed  Google Scholar 

  67. Means GE, Feeney RE (1990) Chemical modifications of proteins: history and applications. Bioconjug Chem 1(1):2–12

    Article  CAS  PubMed  Google Scholar 

  68. Larsen MR, Hojrup P, Roepstorff P (2005) Characterization of gel-separated glycoproteins using two-step proteolytic digestion combined with sequential microcolumns and mass spectrometry. Mol Cell Proteomics 4(2):107–119

    Article  CAS  PubMed  Google Scholar 

  69. Saba J, Dutta S, Hemenway E et al (2012) Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation. Int Jurnal of proteomics 2012:560391. doi:10.1155/2012/560391

    Google Scholar 

  70. Wu SW, Pu TH, Viner R et al (2014) Novel LC-MS(2) product dependent parallel data acquisition function and data analysis workflow for sequencing and identification of intact glycopeptides. Anal Chem 86(11):5478–5486. doi:10.1021/ac500945m

    Article  CAS  PubMed  Google Scholar 

  71. Thaysen-Andersen M, Wilkinson BL, Payne RJ et al (2011) Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS. Electrophoresis 32(24):3536–3545. doi:10.1002/elps.201100294

    Article  CAS  PubMed  Google Scholar 

  72. Good DM, Wirtala M, McAlister GC et al (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951

    Article  CAS  PubMed  Google Scholar 

  73. Thingholm TE, Palmisano G, Kjeldsen F et al (2010) Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9(8):4045–4052. doi:10.1021/pr100230q

    Article  CAS  PubMed  Google Scholar 

  74. Schmidt A, Karas M, Dulcks T (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 14(5):492–500, doi:S1044030503001284 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Darula Z, Medzihradszky KF (2015) Carbamidomethylation side-reactions may lead to glycan misassignments in glycopeptide analysis. Anal Chem. doi:10.1021/acs.analchem.5b01121

    PubMed  Google Scholar 

  76. Medzihradszky KF (2014) Noncovalent dimer formation in liquid chromatography-mass spectrometry analysis. Anal Chem 86(18):8906–8909. doi:10.1021/ac502790j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Darula Z, Medzihradszky KF (2014) Glycan side reaction may compromise ETD-based glycopeptide identification. J Am Soc Mass Spectrom 25(6):977–987. doi:10.1007/s13361-014-0852-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I would like to thank Beverley and Meowcroft Phillips for their tireless support and proofreading of this manuscript. N.E.S. is supported by a National Health and Medical Research Council (NHMRC) of Australia Overseas (Biomedical) Early Career Fellowship (APP1037373) and a Michael Smith Foundation for Health Research Trainee Postdoctoral Fellowship (award # 5363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichollas E. Scott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Scott, N.E. (2017). Characterizing Glycoproteins by Mass Spectrometry in Campylobacter jejuni . In: Butcher, J., Stintzi, A. (eds) Campylobacter jejuni. Methods in Molecular Biology, vol 1512. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6536-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6536-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6534-2

  • Online ISBN: 978-1-4939-6536-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics