Skip to main content

Probing Chromatin Modifications in Response to ERK Signaling

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1487))

Abstract

Chromatin immunoprecipitation (ChIP) is a technique used to determine the association of proteins or histone modifications with chromatin regions in living cells or tissues, and is used extensively in the chromatin biology field to study transcriptional and epigenetic mechanisms. Increasing evidence points to an epigenetic coordination of signaling cascades, such as ERK, that regulate key processes in development and disease, revealing novel principles of gene regulation. Here we describe a detailed protocol for performing chromatin immunoprecipitation followed by qPCR (ChIP-qPCR) for probing histone modifications regulated by ERK signaling in mouse ESCs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43:559–599

    Article  CAS  PubMed  Google Scholar 

  2. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  3. Badeaux AI, Shi Y (2013) Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol 14:211–224

    Article  CAS  PubMed Central  Google Scholar 

  4. Johnson DG, Dent SY (2013) Chromatin: receiver and quarterback for cellular signals. Cell 152:685–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonni A, Brunet A, West AE et al (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    Article  CAS  PubMed  Google Scholar 

  6. Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13:928–942

    Article  CAS  PubMed  Google Scholar 

  7. Khokhlatchev AV, Canagarajah B, Wilsbacher J et al (1998) Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93:605–615

    Article  CAS  PubMed  Google Scholar 

  8. Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393

    Article  CAS  PubMed  Google Scholar 

  9. Hu S, Xie Z, Onishi A et al (2009) Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 139:610–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Klein AM, Zaganjor E, Cobb MH (2013) Chromatin-tethered MAPKs. Curr Opin Cell Biol 25:272–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tee WW, Shen SS, Oksuz O et al (2014) Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156:678–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trigon S, Serizawa H, Conaway JW et al (1998) Characterization of the residues phosphorylated in vitro by different C-terminal domain kinases. J Biol Chem 273:6769–6775

    Article  CAS  PubMed  Google Scholar 

  13. Deng C, Kaplan MJ, Yang J et al (2001) Decreased Ras-mitogen-activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 44:397–407

    Article  CAS  PubMed  Google Scholar 

  14. Gorelik G, Richardson B (2009) Aberrant T cell ERK pathway signaling and chromatin structure in lupus. Autoimmun Rev 8:196–198

    Article  CAS  PubMed  Google Scholar 

  15. Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, Magnusdottir E, Surani MA (2013) Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep 14:629–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leitch HG, McEwen KR, Turp A et al (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamaji M, Ueda J, Hayashi K et al (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12:368–382

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Gorelik GJ, Strickland FM et al (2010) Decreased ERK and JNK signaling contribute to gene overexpression in “senescent” CD4 + CD28- T cells through epigenetic mechanisms. J Leukoc Biol 87:137–145

    Article  CAS  PubMed  Google Scholar 

  19. Nabet B, Broin PB, Reyes JM, Shieh K, Lin CY, Will CM, Popovic R, Ezponda T, Bradner JE, Golden AA, Licht JD (2015) Deregulation of the Ras-Erk signaling axis modulates the enhancer landscape. Cell Rep 12:1300–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lanner F, Rossant J (2010) The role of FGF/Erk signaling in pluripotent cells. Development 137:3351–3360

    Article  CAS  PubMed  Google Scholar 

  21. Goke J, Chan YS, Yan J et al (2013) Genome-wide kinase-chromatin interactions reveal the regulatory network of ERK signaling in human embryonic stem cells. Mol Cell 50:844–855

    Article  CAS  PubMed  Google Scholar 

  22. Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tee WW, Reinberg D (2014) Chromatin features and the epigenetic regulation of pluripotency states in ESCs. Development 141: 2376–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ficz G, Hore TA, Santos F et al (2013) FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Joshi O, Wang SY, Kuznetsova T et al (2015) Dynamic reorganization of extremely long-range promoter-promoter interactions between two states of pluripotency. Cell Stem Cell 17:748–757

    Article  CAS  PubMed  Google Scholar 

  26. Cuddapah S, Barski A, Cui K et al (2009) Native chromatin preparation and Illumina/Solexa library construction. Cold Spring Harb Protoc 2009:5237

    Article  Google Scholar 

  27. Orlando DA, Chen MW, Brown VE, Solanki S, Choi YJ, Olson ER, Fritz CC, Bradner JE, Guenther MG (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Rep 9:1163–1170

    Article  CAS  PubMed  Google Scholar 

  28. Bonhoure N, Bounova G, Bernasconi D et al (2014) Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization. Genome Res 24:1157–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  30. Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kent WJ, Sugnet CW, Furey TS et al (2002) The human genome browser at UCSC. Genome Res 12:996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    Article  CAS  PubMed  Google Scholar 

  33. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3--new capabilities and interfaces. Nucleic Acids Res 40, e115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marks H, Kalkan T, Menafra R et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the W.-W.T. lab is supported by research fundings from the Singapore National Research Foundation Fellowship as well as the Biomedical Research Council, Agency for Science, Technology and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wee-Wei Tee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Oksuz, O., Tee, WW. (2017). Probing Chromatin Modifications in Response to ERK Signaling. In: Jimenez, G. (eds) ERK Signaling. Methods in Molecular Biology, vol 1487. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6424-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6424-6_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6422-2

  • Online ISBN: 978-1-4939-6424-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics