Skip to main content

SpeedyGenes: Exploiting an Improved Gene Synthesis Method for the Efficient Production of Synthetic Protein Libraries for Directed Evolution

  • Protocol
  • First Online:
Synthetic DNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1472))

Abstract

Gene synthesis is a fundamental technology underpinning much research in the life sciences. In particular, synthetic biology and biotechnology utilize gene synthesis to assemble any desired DNA sequence, which can then be incorporated into novel parts and pathways. Here, we describe SpeedyGenes, a gene synthesis method that can assemble DNA sequences with greater fidelity (fewer errors) than existing methods, but that can also be used to encode extensive, statistically designed sequence variation at any position in the sequence to create diverse (but accurate) variant libraries. We summarize the integrated use of GeneGenie to design DNA and oligonucleotide sequences, followed by the procedure for assembling these accurately and efficiently using SpeedyGenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Currin A, Swainston N, Day PJ, Kell DB (2014) SpeedyGenes: an improved gene synthesis method for the efficient production of error-corrected, synthetic protein libraries for directed evolution. Protein Eng Des Sel 27:273–280. doi:10.1093/protein/gzu029

  2. Bar-Even A, Noor E, Savir Y, Liebermeister W, Davidi D, Tawfik DS, Milo R (2011) The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50(21):4402–4410

    Article  CAS  PubMed  Google Scholar 

  3. Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639–666

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44(5):1172–1239. doi:10.1039/c1034cs00351a

    Article  CAS  PubMed  Google Scholar 

  5. Kell DB, Westerhoff HV (1986) Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol Rev 39:305–320

    Article  CAS  Google Scholar 

  6. Mendes P, Kell DB (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883

    Article  CAS  PubMed  Google Scholar 

  7. Arnold FH, Volkov AA (1999) Directed evolution of biocatalysts. Curr Opin Chem Biol 3(1):54–59

    Article  CAS  PubMed  Google Scholar 

  8. Voigt CA, Kauffman S, Wang ZG (2001) Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem 55:79–160

    Article  Google Scholar 

  9. Turner NJ (2009) Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5(8):567–573

    Article  CAS  PubMed  Google Scholar 

  10. Kell DB, Lurie-Luke E (2015) The virtue of innovation: innovation through the lenses of biological evolution. J R Soc Interface 12(2):20141183. doi:10.1098/rsif.2014.1183

    PubMed  PubMed Central  Google Scholar 

  11. McCullum EO, Williams BA, Zhang J, Chaput JC (2010) Random mutagenesis by error-prone PCR. Methods Mol Biol 634:103–109. doi:10.1007/978-1-60761-652-8_7

    Article  CAS  PubMed  Google Scholar 

  12. Stemmer WPC (1994) Rapid evolution of a protein in vivo by DNA shuffling. Nature 370:389–391

    Article  CAS  PubMed  Google Scholar 

  13. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9(11):1797–1804

    Article  CAS  PubMed  Google Scholar 

  14. Kell DB (2012) Scientific discovery as a combinatorial optimisation problem: how best to navigate the landscape of possible experiments? Bioessays 34(3):236–244

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pritchard L, Corne DW, Kell DB, Rowland JJ, Winson MK (2004) A general model of error-prone PCR. J Theor Biol 234(4):497–509

    Article  Google Scholar 

  16. Zhao J, Kardashliev T, Joelle Ruff A, Bocola M, Schwaneberg U (2014) Lessons from diversity of directed evolution experiments by an analysis of 3,000 mutations. Biotechnol Bioeng 111:2380–2389. doi:10.1002/bit.25302

    Article  CAS  PubMed  Google Scholar 

  17. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220

    Article  CAS  PubMed  Google Scholar 

  18. Swainston N, Currin A, Day PJ, Kell DB (2014) GeneGenie: optimised oligomer design for directed evolution. Nucleic Acids Res 12:W395–W400. doi:10.1093/nar/gku336

    Article  Google Scholar 

  19. Knight CG, Platt M, Rowe W, Wedge DC, Khan F, Day P, McShea A, Knowles J, Kell DB (2009) Array-based evolution of DNA aptamers allows modelling of an explicit sequence-fitness landscape. Nucleic Acids Res 37(1):e6

    Article  PubMed  Google Scholar 

  20. Oates MJ, Corne DW, Kell DB (2003) The bimodal feature at large population sizes and high selection pressure: implications for directed evolution. In: Tan KC, Lim MH, Yao X, Wang L (eds) Recent advances in simulated evolution and learning. World Scientific, Singapore, pp 215–240

    Google Scholar 

  21. Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25(3):338–344

    Article  CAS  PubMed  Google Scholar 

  22. Nomenclature Committee of the International Union of Biochemistry (NC-IUB) (1985) Nomenclature for incompletely specified bases in nucleic acid sequences. Recommendations 1984. Eur J Biochem 150:1–5

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology and Biological Sciences Research Council for financial support (grant BB/M017702/1); Prof Nick Turner, Dr. Ian Rowles, and Dr. Timothy Eyes for useful discussions; and Mrs. Hannah Currin for preparation of figures. This is a contribution from the Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Currin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Currin, A., Swainston, N., Day, P.J., Kell, D.B. (2017). SpeedyGenes: Exploiting an Improved Gene Synthesis Method for the Efficient Production of Synthetic Protein Libraries for Directed Evolution. In: Hughes, R. (eds) Synthetic DNA. Methods in Molecular Biology, vol 1472. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6343-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6343-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6341-6

  • Online ISBN: 978-1-4939-6343-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics