Skip to main content

In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes

  • Protocol
  • First Online:
In Vivo Fluorescence Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1444))

  • 2259 Accesses

Abstract

Near-infrared fluorescence (NIRF) imaging is an emerging imaging technique for studying diseases at the molecular level. Optical imaging with a near-infrared emitting fluorophore for targeting tumor angiogenesis offers a noninvasive method for early tumor detection and efficient monitoring of tumor response to anti-angiogenesis therapy. CD13 receptor, a zinc-dependent membrane-bound ectopeptidase, plays important roles in regulating tumor angiogenesis and the growth of new blood vessels. In this chapter, we use CD13 receptor as an example to demonstrate how to construct CD13-specific NGR-containing peptides via bioorthogonal click chemistry for visualizing and quantifying the CD13 receptor expression in vivo by means of NIRF optical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  CAS  PubMed  Google Scholar 

  2. Tung CH (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76(5):391–403

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Conti PS, Moats RA (2004) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer Res 64(21):8009–8014

    Article  CAS  PubMed  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen K, Yap LP, Park R, Hui X, Wu K, Fan D, Chen X, Conti PS (2012) A Cy5.5-labeled phage-displayed peptide probe for near-infrared fluorescence imaging of tumor vasculature in living mice. Amino Acids 42(4):1329–1337

    Article  CAS  PubMed  Google Scholar 

  6. Li G, Xing Y, Wang J, Conti PS, Chen K (2014) Near-infrared fluorescence imaging of CD13 receptor expression using a novel Cy5.5-labeled dimeric NGR peptide. Amino Acids 46(6):1547–1556

    Article  CAS  PubMed  Google Scholar 

  7. Raymond SB, Skoch J, Hills ID, Nesterov EE, Swager TM, Bacskai BJ (2008) Smart optical probes for near-infrared fluorescence imaging of Alzheimer's disease pathology. Eur J Nucl Med Mol Imaging 35(Suppl 1):S93–S98

    Article  PubMed  Google Scholar 

  8. Wunderbaldinger P, Turetschek K, Bremer C (2003) Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur Radiol 13(9):2206–2211

    Article  PubMed  Google Scholar 

  9. Sakatani K, Kashiwasake-Jibu M, Taka Y, Wang S, Zuo H, Yamamoto K, Shimizu K (1997) Noninvasive optical imaging of the subarachnoid space and cerebrospinal fluid pathways based on near-infrared fluorescence. J Neurosurg 87(5):738–745

    Article  CAS  PubMed  Google Scholar 

  10. Chen K, Chen X (2011) Positron emission tomography imaging of cancer biology: current status and future prospects. Semin Oncol 38(1):70–86

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62(11):1005–1022

    Article  CAS  PubMed  Google Scholar 

  12. Cai W, Gambhir SS, Chen X (2008) Chapter 7. Molecular imaging of tumor vasculature. Methods Enzymol 445:141–176

    Article  CAS  PubMed  Google Scholar 

  13. Huang R, Wang M, Zhu Y, Conti PS, Chen K (2015) Development of PET probes for cancer imaging. Curr Top Med Chem 15(8):795–819

    Article  CAS  PubMed  Google Scholar 

  14. Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N (2001) Overview of angiogenesis: biologic implications for antiangiogenic therapy. Semin Oncol 28(5 Suppl 16):94–104

    Article  CAS  PubMed  Google Scholar 

  15. Kuwano M, Fukushi J, Okamoto M, Nishie A, Goto H, Ishibashi T, Ono M (2001) Angiogenesis factors. Intern Med 40(7):565–572

    Article  CAS  PubMed  Google Scholar 

  16. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248

    Article  CAS  PubMed  Google Scholar 

  17. Bhagwat SV, Lahdenranta J, Giordano R, Arap W, Pasqualini R, Shapiro LH (2001) CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97(3):652–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci U S A 109(5):1637–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teranishi J, Ishiguro H, Hoshino K, Noguchi K, Kubota Y, Uemura H (2008) Evaluation of role of angiotensin III and aminopeptidases in prostate cancer cells. Prostate 68(15):1666–1673

    Article  CAS  PubMed  Google Scholar 

  20. Ikeda N, Nakajima Y, Tokuhara T, Hattori N, Sho M, Kanehiro H, Miyake M (2003) Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res 9(4):1503–1508

    CAS  PubMed  Google Scholar 

  21. Hashida H, Takabayashi A, Kanai M, Adachi M, Kondo K, Kohno N, Yamaoka Y, Miyake M (2002) Aminopeptidase N is involved in cell motility and angiogenesis: its clinical significance in human colon cancer. Gastroenterology 122(2):376–386

    Article  CAS  PubMed  Google Scholar 

  22. Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380

    Article  CAS  PubMed  Google Scholar 

  23. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    CAS  PubMed  PubMed Central  Google Scholar 

  24. von Wallbrunn A, Waldeck J, Holtke C, Zuhlsdorf M, Mesters R, Heindel W, Schafers M, Bremer C (2008) In vivo optical imaging of CD13/APN-expression in tumor xenografts. J Biomed Opt 13(1):011007

    Article  Google Scholar 

  25. Negussie AH, Miller JL, Reddy G, Drake SK, Wood BJ, Dreher MR (2010) Synthesis and in vitro evaluation of cyclic NGR peptide targeted thermally sensitive liposome. J Control Release 143(2):265–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang RE, Niu Y, Wu H, Amin MN, Cai J (2011) Development of NGR peptide-based agents for tumor imaging. Am J Nucl Med Mol Imaging 1(1):36–46

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao Y, Liang W, Kang F, Yang W, Ma X, Li G, Zong S, Chen K, Wang J (2014) 68Ga-labeled cyclic NGR peptide for MicroPET imaging of CD13 receptor expression. Molecules 19(8):11600–11612

    Article  CAS  PubMed  Google Scholar 

  28. Li G, Wang X, Zong S, Wang J, Conti PS, Chen K (2014) MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 11(11):3938–3946

    Article  CAS  PubMed  Google Scholar 

  29. Ma W, Kang F, Wang Z, Yang W, Li G, Ma X, Li G, Chen K, Zhang Y, Wang J (2013) 99mTc-labeled monomeric and dimeric NGR peptides for SPECT imaging of CD13 receptor in tumor-bearing mice. Amino Acids 44(5):1337–1345

    Article  CAS  PubMed  Google Scholar 

  30. Chen K, Ma W, Li G, Wang J, Yang W, Yap LP, Hughes LD, Park R, Conti PS (2013) Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR peptides for microPET imaging of CD13 receptor expression. Mol Pharm 10(1):417–427

    Article  CAS  PubMed  Google Scholar 

  31. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137

    Article  CAS  PubMed  Google Scholar 

  32. Nwe K, Brechbiel MW (2009) Growing applications of “click chemistry” for bioconjugation in contemporary biomedical research. Cancer Biother Radiopharm 24(3):289–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen K, Wang X, Lin W, Shen K-F, Yap LP, Hughes LD, Conti PS (2012) Strain-promoted catalyst-free click chemistry for rapid construction of 64Cu-labeled PET imaging probes. ACS Med Chem Lett 3(12):1019–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Debets MF, van Berkel SS, Schoffelen S, Rutjes FP, van Hest JC, van Delft FL (2010) Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3+2) cycloaddition. Chem Commun 46(1):97–99

    Article  CAS  Google Scholar 

  35. Debets MF, van Berkel SS, Dommerholt J, Dirks AT, Rutjes FP, van Delft FL (2011) Bioconjugation with strained alkenes and alkynes. Acc Chem Res 44(9):805–815

    Article  CAS  PubMed  Google Scholar 

  36. Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the American Cancer Society (#IRG-58-007-51), the Robert E. and May R. Wright Foundation, and the USC Department of Radiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, R., Conti, P.S., Chen, K. (2016). In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes. In: Bai, M. (eds) In Vivo Fluorescence Imaging. Methods in Molecular Biology, vol 1444. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3721-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3721-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3719-6

  • Online ISBN: 978-1-4939-3721-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics