Skip to main content

Mouse Models of Type 2 Diabetes Mellitus in Drug Discovery

  • Protocol
  • First Online:
Book cover Mouse Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1438))

Abstract

Type 2 diabetes is a fast-growing epidemic in industrialized countries, associated with obesity, lack of physical exercise, aging, family history, and ethnic background. Diagnostic criteria are elevated fasting or postprandial blood glucose levels, a consequence of insulin resistance. Early intervention can help patients to revert the progression of the disease together with lifestyle changes or monotherapy. Systemic glucose toxicity can have devastating effects leading to pancreatic beta cell failure, blindness, nephropathy, and neuropathy, progressing to limb ulceration or even amputation. Existing treatments have numerous side effects and demonstrate variability in individual patient responsiveness. However, several emerging areas of discovery research are showing promises with the development of novel classes of antidiabetic drugs.

The mouse has proven to be a reliable model for discovering and validating new treatments for type 2 diabetes mellitus. We review here commonly used methods to measure endpoints relevant to glucose metabolism which show good translatability to the diagnostic of type 2 diabetes in humans: baseline fasting glucose and insulin, glucose tolerance test, insulin sensitivity index, and body type composition. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DEXA:

Dual energy X-ray absorptiometry

DIO:

Diet-induced obesity

D-PBS:

Dulbecco’s Phosphate Buffered Saline

ED50 :

Dose providing 50 % efficacy

GSIS:

Glucose-stimulated insulin secretion

GTT:

Glucose tolerance test

i.p.:

Intraperitoneal

i.v.:

Intravenous

ITT:

Insulin tolerance test

MRI:

Magnetic Resonance Imaging

NEFA:

Nonesterified fatty acid

p.o.:

per oral gavage

PD:

Pharmacodynamics

PK:

Pharmacokinetics

s.c.:

Subcutaneous

STZ:

Streptozotocin

T2DM:

Type 2 diabetes mellitus

References

  1. Saltiel AR (2001) New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517–529

    Article  CAS  PubMed  Google Scholar 

  2. Prevention CfDCa (2014) National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States. U. S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  3. Koenig RJ, Peterson CM, Jones RL, Saudek C, Lehrman M, Cerami A (1976) Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. N Engl J Med 295:417–420

    Article  CAS  PubMed  Google Scholar 

  4. Bennett WL, Maruthur NM, Singh S, Segal JB, Wilson LM, Chatterjee R et al (2011) Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med 154:602–613

    Article  PubMed  PubMed Central  Google Scholar 

  5. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M et al (2012) Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 35:1364–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M et al (2013) PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med 19:557–566

    Article  CAS  PubMed  Google Scholar 

  7. Raskin P (2008) Why insulin sensitizers but not secretagogues should be retained when initiating insulin in type 2 diabetes. Diabetes Metab Res Rev 24:3–13

    Article  CAS  PubMed  Google Scholar 

  8. Tomkin GH (2014) Treatment of type 2 diabetes, lifestyle, GLP1 agonists and DPP4 inhibitors. World J Diabetes 5:636–650

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vivian EM (2014) Sodium-glucose co-transporter 2 (SGLT2) inhibitors: a growing class of antidiabetic agents. Drugs Context 3:212264

    Article  PubMed  PubMed Central  Google Scholar 

  10. Puzziferri N, Roshek TB 3rd, Mayo HG, Gallagher R, Belle SH, Livingston EH (2014) Long-term follow-up after bariatric surgery: a systematic review. JAMA 312:934–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanghera DK, Blackett PR (2012) Type 2 diabetes genetics: beyond GWAS. J Diabetes Metab 3:6948-6971

    Google Scholar 

  12. Yu H, Zheng X, Zhang Z (2013) Mechanism of Roux-en-Y gastric bypass treatment for type 2 diabetes in rats. J Gastrointest Surg 17:1073–1083

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baribault H, Majeti JZ, Ge H, Wang J, Xiong Y, Gardner J et al (2014) Advancing therapeutic discovery through phenotypic screening of the extracellular proteome using hydrodynamic intravascular injection. Expert Opin Ther Targets 18:1253–1264

    Article  CAS  PubMed  Google Scholar 

  14. Veniant MM, Komorowski R, Chen P, Stanislaus S, Winters K, Hager T et al (2012) Long-acting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153:4192–4203

    Article  CAS  PubMed  Google Scholar 

  15. Foltz IN, Hu S, King C, Wu X, Yang C, Wang W et al (2012) Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med 4:162ra53

    Article  Google Scholar 

  16. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL et al (2013) The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 18:333–340

    Article  CAS  PubMed  Google Scholar 

  17. Wu X, Ge H, Baribault H, Gupte J, Weiszmann J, Lemon B et al (2013) Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res 54:325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu X, Ge H, Lemon B, Vonderfecht S, Baribault H, Weiszmann J et al (2010) Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc Natl Acad Sci U S A 107:14158–14163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214

    Article  PubMed  Google Scholar 

  20. Srinivasan S, Florez JC (2015) Therapeutic challenges in diabetes prevention: we have not found the "Exercise Pill". Clin Pharmacol Ther 98:162–169

    Article  CAS  PubMed  Google Scholar 

  21. Townsend KL, Tseng YH (2014) Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab 25:168–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Halford JC, Harrold JA (2008) Neuropharmacology of human appetite expression. Dev Disabil Res Rev 14:158–164

    Article  PubMed  Google Scholar 

  23. Fulton S (2010) Appetite and reward. Front Neuroendocrinol 31:85–103

    Article  PubMed  Google Scholar 

  24. Yeadon J (2015) Choosing among type II diabetes mouse models. The Jackson Laboratory. https://new.jax.org/news-and-insights/jax-blog/2015/july/choosing-among-type-ii-diabetes-mouse-models#

    Google Scholar 

  25. Tam CS, Lecoultre V, Ravussin E (2011) Novel strategy for the use of leptin for obesity therapy. Expert Opin Biol Ther 11:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svenson KL, Von Smith R, Magnani PA, Suetin HR, Paigen B, Naggert JK et al (2007) Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J Appl Physiol (1985) 102:2369–2378

    Article  CAS  Google Scholar 

  27. Alexander J, Chang GQ, Dourmashkin JT, Leibowitz SF (2006) Distinct phenotypes of obesity-prone AKR/J, DBA2J and C57BL/6J mice compared to control strains. Int J Obes (Lond) 30:50–59

    Article  CAS  Google Scholar 

  28. Clee SM, Attie AD (2007) The genetic landscape of type 2 diabetes in mice. Endocr Rev 28:48–83

    Article  CAS  PubMed  Google Scholar 

  29. Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K (2007) Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp Anim 56:263–272

    Article  CAS  PubMed  Google Scholar 

  30. Luo J, Quan J, Tsai J, Hobensack CK, Sullivan C, Hector R et al (1998) Nongenetic mouse models of non-insulin-dependent diabetes mellitus. Metab Clin Exp 47:663–668

    Article  CAS  PubMed  Google Scholar 

  31. Baribault H et al (2014) Advancing therapeutic discovery through phenotypic screening of the extracellular proteome using hydrodynamic intravascular injection. Expert Opin Ther Targets 18(11):1253–1264

    Article  CAS  PubMed  Google Scholar 

  32. Kebede M, Alquier T, Latour MG, Semache M, Tremblay C, Poitout V (2008) The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes 57:2432–2437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buchner DA, Burrage LC, Hill AE, Yazbek SN, O'Brien WE, Croniger CM et al (2008) Resistance to diet-induced obesity in mice with a single substituted chromosome. Physiol Genomics 35:116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brommage R (2003) Validation and calibration of DEXA body composition in mice. Am J Physiol Endocrinol Metab 285:E454–E459

    Article  CAS  PubMed  Google Scholar 

  35. Gregoire FM, Zhang Q, Smith SJ, Tong C, Ross D, Lopez H et al (2002) Diet-induced obesity and hepatic gene expression alterations in C57BL/6J and ICAM-1-deficient mice. Am J Physiol Endocrinol Metab 282:E703–E713

    Article  CAS  PubMed  Google Scholar 

  36. Tinsley FC, Taicher GZ, Heiman ML (2004) Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 12:150–160

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to Jonitha Gardner, Laura Hoffman, Cheryl Loughery, Drs. Jiangwen Majeti, Alykhan Motani, and Wen-Chen Yeh for scientific discussions and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene Baribault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Baribault, H. (2016). Mouse Models of Type 2 Diabetes Mellitus in Drug Discovery. In: Proetzel, G., Wiles, M. (eds) Mouse Models for Drug Discovery. Methods in Molecular Biology, vol 1438. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3661-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3661-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3659-5

  • Online ISBN: 978-1-4939-3661-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics