Skip to main content

Protein Inactivation by Optogenetic Trapping in Living Cells

  • Protocol
  • First Online:
Optogenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1408))

Abstract

Optogenetic modules that use genetically encoded elements to control protein function in response to light allow for precise spatiotemporal modulation of signaling pathways. As one of optical approaches, LARIAT (Light-Activated Reversible Inhibition by Assembled Trap) is a unique light-inducible inhibition system that reversibly sequesters target proteins into clusters, generated by multimeric proteins and a blue light-induced heterodimerization module. Here we present a method based on LARIAT for optical inhibition of targets in living mammalian cells. In the protocol, we focus on the inhibition of proteins that modulate cytoskeleton and cell cycle, and describe how to transfect, conduct a photo-stimulation, and analyze the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doupe DP, Perrimon N (2014) Visualizing and manipulating temporal signaling dynamics with fluorescence-based tools. Sci Signal 7(319):1

    Article  Google Scholar 

  2. Turgeon B, Meloche S (2009) Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev 89(1):1–26

    Article  CAS  PubMed  Google Scholar 

  3. Stockwell BR (2004) Exploring biology with small organic molecules. Nature 432(7019):846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou P (2005) Targeted protein degradation. Curr Opin Chem Biol 9(1):51–55

    Article  CAS  PubMed  Google Scholar 

  5. Banaszynski LA, Wandless TJ (2006) Conditional control of protein function. Chem Biol 13(1):11–21

    Article  CAS  PubMed  Google Scholar 

  6. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, Hahn KM (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461(7260):104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7(12):973–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bugaj LJ, Choksi AT, Mesuda CK, Kane RS, Schaffer DV (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10(3):249–252

    Article  CAS  PubMed  Google Scholar 

  10. Lee S, Park H, Kyung T, Kim NY, Kim S, Kim J, Heo WD (2014) Reversible protein inactivation by optogenetic trapping in cells. Nat Methods 11(6):633–636

    Article  CAS  PubMed  Google Scholar 

  11. Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3(11):887–889

    Article  CAS  PubMed  Google Scholar 

  12. Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bista M, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-Soldner R (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5(7):605–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen K, Meyer T (1998) In vivo and in vitro characterization of the sequence requirement for oligomer formation of Ca2+/calmodulin-dependent protein kinase IIalpha. J Neurochem 70(1):96–104

    Article  CAS  PubMed  Google Scholar 

  14. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123(5):849–860

    Article  CAS  PubMed  Google Scholar 

  15. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Basic Science (no. IBS-R001-G1), Republic of Korea. Figures 1, 2, 4, 5, and 8 are reproduced with permission from Nature Methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won Do Heo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Park, H., Lee, S., Heo, W.D. (2016). Protein Inactivation by Optogenetic Trapping in Living Cells. In: Kianianmomeni, A. (eds) Optogenetics. Methods in Molecular Biology, vol 1408. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3512-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3512-3_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3510-9

  • Online ISBN: 978-1-4939-3512-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics