Skip to main content

Preconditioning Vaccine Sites for mRNA-Transfected Dendritic Cell Therapy and Antitumor Efficacy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

Messenger RNA (mRNA)-transfected dendritic cell (DC) vaccines have been shown to be a powerful modality for eliciting antitumor immune responses in mice and humans; however, their application has not been fully optimized since many of the factors that contribute to their efficacy remain poorly understood. Work stemming from our laboratory has recently demonstrated that preconditioning the vaccine site with a recall antigen prior to the administration of a dendritic cell vaccine creates systemic recall responses and resultantly enhances dendritic cell migration to the lymph nodes with improved antitumor efficacy. This chapter describes the generation of murine mRNA-transfected DC vaccines, as well as a method for vaccine site preconditioning with protein antigen formulations that create potent recall responses.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  3. Yu JS, Wheeler CJ, Zeltzer PM et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    CAS  PubMed  Google Scholar 

  4. Okada H, Kalinski P, Ueda R et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29:330–336

    Article  CAS  PubMed  Google Scholar 

  5. Yamanaka R, Abe T, Yajima N et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cho DY, Yang WK, Lee HC et al (2012) Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial. World Neurosurg 77:736–744

    Article  PubMed  Google Scholar 

  7. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–1034

    CAS  PubMed  Google Scholar 

  8. Boczkowski D, Nair SK, Snyder D, Gilboa E (1996) Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 184:465–472

    Article  CAS  PubMed  Google Scholar 

  9. Nair SK, Morse M, Boczkowski D et al (2002) Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 235:540–549

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nair SK, De Leon G, Boczkowski D et al (2014) Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp 65-specific cytotoxic T cells. Clin Cancer Res 20:2684–2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nair SK, Boczkowski D, Morse M et al (1998) Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 16:364–369

    Article  CAS  PubMed  Google Scholar 

  12. Bonehill A, Heirman C, Tuyaerts S et al (2004) Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172:6649–6657

    Article  CAS  PubMed  Google Scholar 

  13. Inaba K, Inaba M, Romani N et al (1992) Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulolcyte/macrophage colony-stimulating factor. J Exp Med 176:1693–1702

    Article  CAS  PubMed  Google Scholar 

  14. Nair S, Archer GE, Tedder TF (2012) Isolation and generation of human dendritic cells. Curr Protoc Immunol 7, Unit 7.32:1–23

    Google Scholar 

  15. Inaba K, Swiggard WJ, Steinman RM et al (2009) Isolation of dendritic cells. Curr Protoc Immunol 86:I:3.7:3.7.1–3.7.19

    Google Scholar 

  16. Lutz MB, Schnare M, Menges M et al (2002) Differential functions of IL-4 receptor types I and II for dendritic cell maturation and IL-12 production and their dependency on GM-CSF. J Immunol 169:3574–3580

    Article  CAS  PubMed  Google Scholar 

  17. Hochrein H, O'Keeffe M, Luft T et al (2000) Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 192:823–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H (2002) Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol Cell Biol 80:477–483

    Article  PubMed  Google Scholar 

  19. Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483

    Article  CAS  PubMed  Google Scholar 

  20. Van Brussel I, Berneman ZN, Cools N (2012) Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012:690643

    PubMed  PubMed Central  Google Scholar 

  21. Schuurhuis DH, Lesterhuis WJ, Kramer M et al (2009) Polyinosinic polycytidylic acid prevents efficient antigen expression after mRNA electroporation of clinical grade dendritic cells. Cancer Immunol Immunother 58:1109–1115

    Article  CAS  PubMed  Google Scholar 

  22. Karikó K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279:12542–12550

    Article  PubMed  Google Scholar 

  23. De Vries I, Krooshoop D, Scharenborg N et al (2003) Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 63:7–12

    Google Scholar 

  24. Eggert A, Schreurs M, Boerman O et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340–3345

    CAS  PubMed  Google Scholar 

  25. Eggert A, van der Voort R, Torensma R et al (2003) Analysis of dendritic cell trafficking using EGFP-transgenic mice. Immunol Lett 89:17–24

    Article  CAS  PubMed  Google Scholar 

  26. Martin-Fontecha A, Sebastiani S, Hopken UE et al (2003) Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med 198:615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prins RM, Craft N, Bruhn KW et al (2006) The TLR-7 agonist, imiquimod, enhances dendritic cell survival and promotes tumor antigen-specific T cell priming: relation to central nervous system antitumor immunity. J Immunol 176:157–164

    Article  CAS  PubMed  Google Scholar 

  28. Chagnon F, Tanguay S, Ozdal OL et al (2005) Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin Cancer Res 11:1302–1311

    CAS  PubMed  Google Scholar 

  29. Strutt TM, McKinstry KK, Dibble JP et al (2010) Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16:558–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Narni-Mancinelli E, Campisi L, Bassand D et al (2007) Memory CD8+ T cells mediate antibacterial immunity via CCL3 activation of TNF/ROI+ phagocytes. J Exp Med 204:2075–2087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Russell JE, Liebhaber SA (1996) The stability of human beta-globin mRNA is dependent on structural determinants positioned within its 3′ untranslated region. Blood 87:5314–5323

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Sampson M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Batich, K.A., Swartz, A.M., Sampson, J.H. (2016). Preconditioning Vaccine Sites for mRNA-Transfected Dendritic Cell Therapy and Antitumor Efficacy. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_47

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics