Skip to main content

Network-Assisted Disease Classification and Biomarker Discovery

  • Protocol
Book cover Systems Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1386))

Abstract

Developing improved approaches for diagnosis, treatment, and prevention of diseases is a major goal of biomedical research. Therefore, the discovery of biomarker signatures from high-throughput “omics” data is an active research topic in the field of bioinformatics and systems medicine. A major issue is the low reproducibility and the limited biological interpretability of candidate biomarker signatures identified from high-throughput data. This impedes the use of discovered biomarker signatures into clinical applications. Currently, much focus is placed on developing strategies to improve reproducibility and interpretability. Researchers have fruitfully started to incorporate prior knowledge derived from pathways and molecular networks into the process of biomarker identification. In this chapter, after giving a general introduction to the problem of disease classification and biomarker discovery, we will review two types of network-assisted approaches: (1) approaches inferring activity scores for specific pathways which are subsequently used for classification and (2) approaches identifying subnetworks or modules of molecular networks by differential network analysis which can serve as biomarker signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vasan RS (2006) Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation 113:2335–2362

    Article  PubMed  Google Scholar 

  2. Atkinson AJ, Colburn WA, DeGruttola VG et al (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95

    Article  Google Scholar 

  3. McDermott JE, Wang J, Mitchell H et al (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7:37–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Zahurak M, Parmigiani G, Yu W et al (2007) Pre-processing {A}gilent microarray data. BMC Bioinformatics 8:142

    Article  PubMed Central  PubMed  Google Scholar 

  5. Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. doi:10.1038/ng1032

    Article  CAS  PubMed  Google Scholar 

  6. Smyth GK, Speed T (2003) Normalization of c{DNA} microarray data. Methods 31:265–273

    Article  CAS  PubMed  Google Scholar 

  7. Jain AK (2010) Data clustering: 50 years beyond {K}-means. Pattern Recognit Lett 31:651–666

    Article  Google Scholar 

  8. Cui X, Churchill GA (2003) Statistical tests for differential expression in c{DNA} microarray experiments. Genome Biol 4:210

    Article  PubMed Central  PubMed  Google Scholar 

  9. Dudoit S, Shaffer JP, Boldrick JC (2003) Multiple hypothesis testing in microarray experiments. Stat Sci 18:71–103

    Article  Google Scholar 

  10. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi:10.1038/75556

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kanehisa M, Goto S, Sato Y et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114. doi:10.1093/nar/gkr988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517. doi:10.1093/bioinformatics/btm344

    Article  CAS  PubMed  Google Scholar 

  13. John GH, Kohavi R, Pfleger K (1994) Irrelevant features and the subset selection problem. Proc Elev Int Conf Mach Learn 129:121–129

    Google Scholar 

  14. Kotsiantis SB, Zaharakis ID, Pintelas PE (2007) Supervised machine learning: a review of classification techniques. Front Artif Intell Appl 160:3

    Google Scholar 

  15. Larrañaga P, Calvo B, Santana R et al (2006) Machine learning in bioinformatics. Brief Bioinform 7:86–112

    Article  PubMed  Google Scholar 

  16. Dudoit S, Fridlyand J, Speed TP (2002) Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 97:77–87

    Article  CAS  Google Scholar 

  17. Lee JW, Lee JB, Park M, Song SH (2005) An extensive comparison of recent classification tools applied to microarray data. Comput Stat Data Anal 48:869–885

    Article  Google Scholar 

  18. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Adv Artif Intell (Lect Notes Comput Sci) 1015–1021

    Google Scholar 

  19. Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437. doi:10.1016/j.ipm.2009.03.002

    Article  Google Scholar 

  20. Kohavi R (1995) A study of cross-validation and bootstrap for estimation and model selection. In: Proceedings of the 14th international joint conference on Artificial intelligence. Kaufman, Montreal, pp 1137–1143

    Google Scholar 

  21. Fung G, Rao RB, Rosales R (2008) On the dangers of cross-validation. An experimental evaluation (SIAM). In: Apte C, Park H, Wang K, Zaki MJ (eds) Proceedings of the 2008 SIAM international conference on data mining. doi:10.1137/1.9781611972788.54, pp 588–596

    Google Scholar 

  22. Cun Y, Fröhlich H (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One 8:e73074. doi:10.1371/journal.pone.0073074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Boulesteix A-L, Slawski M (2009) Stability and aggregation of ranked gene lists. Brief Bioinform 10:556–568. doi:10.1093/bib/bbp034

    Article  CAS  PubMed  Google Scholar 

  24. Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492

    Article  CAS  PubMed  Google Scholar 

  25. He Z, Yu W (2010) Stable feature selection for biomarker discovery. Comput Biol Chem 34:215–225. doi:10.1016/j.compbiolchem.2010.07.002

    Article  CAS  PubMed  Google Scholar 

  26. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci U S A 103:5923–5928. doi:10.1073/pnas.0601231103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim S-Y (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147. doi:10.1186/1471-2105-10-147

    Article  PubMed Central  PubMed  Google Scholar 

  28. Haury A-C, Jacob L, Vert J-P (2010) Increasing stability and interpretability of gene expression signatures. arXiv Prepr. arXiv1001.3109

    Google Scholar 

  29. Sanavia T, Aiolli F, Da San Martino G et al (2012) Improving biomarker list stability by integration of biological knowledge in the learning process. BMC Bioinformatics 13(Suppl 4):S22. doi:10.1186/1471-2105-13-S4-S22

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cun Y, Fröhlich H (2012) Biomarker gene signature discovery integrating network knowledge. Biology (Basel) 1:5–17. doi:10.3390/biology1010005

    Google Scholar 

  31. Croft D, Mundo AF, Haw R et al (2014) The Reactome pathway knowledgebase. Nucleic Acids Res. doi:10.1093/nar/gkt1102

    Google Scholar 

  32. Liberzon A, Subramanian A, Pinchback R et al (2011) Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739–1740. doi:10.1093/bioinformatics/btr260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34:D504–D506. doi:10.1093/nar/gkj126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schaefer CF, Anthony K, Krupa S et al (2009) PID: the pathway interaction database. Nucleic Acids Res. doi:10.1093/nar/gkn653

    Google Scholar 

  35. Soh D, Dong D, Guo Y, Wong L (2010) Consistency, comprehensiveness, and compatibility of pathway databases. BMC Bioinformatics 11:449. doi:10.1186/1471-2105-11-449

    Article  PubMed Central  PubMed  Google Scholar 

  36. Stobbe MD, Jansen GA, Moerland PD, van Kampen AHC (2014) Knowledge representation in metabolic pathway databases. Brief Bioinform 15:455–470. doi:10.1093/bib/bbs060

    Article  CAS  PubMed  Google Scholar 

  37. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290. doi:10.1038/msb.2009.47

    Article  PubMed Central  PubMed  Google Scholar 

  38. Wittig U, De Beuckelaer A (2001) Analysis and comparison of metabolic pathway databases. Brief Bioinform 2:126–142. doi:10.1093/bib/2.2.126

    Article  CAS  PubMed  Google Scholar 

  39. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942. doi:10.1038/nbt.1666, Epub 2010 Sep 9

    Google Scholar 

  40. Walhout AJ, Vidal M (2001) High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. Methods 24:297–306. doi:10.1006/meth.2001.1190

    Article  CAS  PubMed  Google Scholar 

  41. Ito T, Chiba T, Ozawa R et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574. doi:10.1073/pnas.061034498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Krogan NJ, Cagney G, Yu H et al (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. doi:10.1038/nature04670

    Article  CAS  PubMed  Google Scholar 

  43. Gavin A-C, Bösche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147. doi:10.1038/415141a

    Article  CAS  PubMed  Google Scholar 

  44. Pieroni E, De La Fuente Van Bentem S, Mancosu G et al (2008) Protein networking: insights into global functional organization of proteomes. Proteomics 8:799–816. doi:10.1002/pmic.200700767

    Article  CAS  PubMed  Google Scholar 

  45. Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics. doi:10.1093/bioinformatics/bti1142

    PubMed Central  Google Scholar 

  46. Chen H, Sharp BM (2004) Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinformatics 5:147. doi:10.1186/1471-2105-5-147

    Article  PubMed Central  PubMed  Google Scholar 

  47. Valencia A, Pazos F (2002) Computational methods for the prediction of protein interactions. Curr Opin Struct Biol 12:368–373. doi:10.1016/S0959-440X(02)00333-0

    Article  CAS  PubMed  Google Scholar 

  48. Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. doi:10.1093/nar/gkq973

    Google Scholar 

  49. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res. doi:10.1093/nar/gks1158

    PubMed Central  PubMed  Google Scholar 

  50. Xenarios I, Fernandez E, Salwinski L et al (2001) DIP: the database of interacting proteins: 2001 update. Nucleic Acids Res 29:239–241. doi:10.1093/nar/28.1.289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Keshava Prasad TS, Goel R, Kandasamy K et al (2009) Human protein reference database – 2009 update. Nucleic Acids Res 37:D767–D772. doi:10.1093/nar/gkn892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Licata L, Briganti L, Peluso D et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. doi:10.1093/nar/gkr930

    PubMed Central  PubMed  Google Scholar 

  53. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res. doi:10.1093/nar/gkr1088

    PubMed Central  PubMed  Google Scholar 

  54. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119. doi:10.1093/nar/gkh131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707–726. doi:10.1093/bioinformatics/16.8.707

    Article  PubMed  Google Scholar 

  56. Butte AJ, Kohane IS (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pac Symp Biocomput 418–429. doi: 10.1142/9789814447331_0040

  57. Faith JJ, Hayete B, Thaden JT et al (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5:e8. doi:10.1371/journal.pbio.0050008

    Article  PubMed Central  PubMed  Google Scholar 

  58. Margolin A, Wang K, Lim WK et al (2006) Reverse engineering cellular networks. Nat Protoc 1:662–671, doi: citeulike-article-id:1224968

    Article  CAS  PubMed  Google Scholar 

  59. Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764. doi:10.1093/bioinformatics/bti062

    Article  PubMed  Google Scholar 

  60. De la Fuente A, Bing N, Hoeschele I, Mendes P (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20:3565–3574. doi:10.1093/bioinformatics/bth445

    Article  PubMed  Google Scholar 

  61. De la Fuente A (2010) From “differential expression” to “differential networking” – identification of dysfunctional regulatory networks in diseases. Trends Genet 26:326–333. doi:10.1016/j.tig.2010.05.001

    Article  PubMed  Google Scholar 

  62. Su J, Yoon BJ, Dougherty ER (2009) Accurate and reliable cancer classification based on probabilistic inference of pathway activity. PLoS One 4:e8161. doi:10.1371/journal.pone.0008161

    Article  PubMed Central  PubMed  Google Scholar 

  63. Zhao X-M, Guimin Q (2013) Identifying biomarkers with differential analysis. In: Shen B (ed) Bioinformatics for diagnosis, prognosis and treatment of complex diseases. Springer, Dordrecht, The Netherlands, pp 17–31

    Chapter  Google Scholar 

  64. Zeng T, Sun S-Y, Wang Y et al (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J 280:5682–5695. doi:10.1111/febs.12536

    Article  CAS  PubMed  Google Scholar 

  65. Staiger C, Cadot S, Györffy B et al (2013) Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis. Front Genet 4:289. doi:10.3389/fgene.2013.00289

    Article  PubMed Central  PubMed  Google Scholar 

  66. Guo Z, Zhang T, Li X et al (2005) Towards precise classification of cancers based on robust gene functional expression profiles. BMC Bioinformatics 6:58. doi:10.1186/1471-2105-6-58

    Article  PubMed Central  PubMed  Google Scholar 

  67. Staiger C, Cadot S, Kooter R et al (2012) A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS One. doi:10.1371/journal.pone.0034796

    Google Scholar 

  68. Tomfohr J, Lu J, Kepler TB (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6:225. doi:10.1186/1471-2105-6-225

    Article  PubMed Central  PubMed  Google Scholar 

  69. Liu K-Q, Liu Z-P, Hao J-K et al (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics 13:126. doi:10.1186/1471-2105-13-126

    Article  PubMed Central  PubMed  Google Scholar 

  70. Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357. doi:10.1038/nature04296

    Article  CAS  PubMed  Google Scholar 

  71. Lee E, Chuang H-Y, Kim J-W et al (2008) Inferring pathway activity toward precise disease classification. PLoS Comput Biol 4:e1000217. doi:10.1371/journal.pcbi.1000217

    Article  PubMed Central  PubMed  Google Scholar 

  72. Yang R, Daigle BJ, Petzold LR, Doyle FJ (2012) Core module biomarker identification with network exploration for breast cancer metastasis. BMC Bioinformatics 13:12. doi:10.1186/1471-2105-13-12

    Article  PubMed Central  PubMed  Google Scholar 

  73. Vaske CJ, Benz SC, Sanborn JZ et al (2010) Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. doi:10.1093/bioinformatics/btq182

    PubMed Central  PubMed  Google Scholar 

  74. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. doi:10.1073/pnas.0506580102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Tarca AL, Draghici S, Khatri P et al (2009) A novel signaling pathway impact analysis. Bioinformatics 25:75–82. doi:10.1093/bioinformatics/btn577

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Haynes WA, Higdon R, Stanberry L et al (2013) Correction: differential expression analysis for pathways. PLoS Comput Biol. doi:10.1371/annotation/58cf4d21-f9b0-4292-94dd-3177f393a284

    Google Scholar 

  77. Kim S, Kon M, DeLisi C (2012) Pathway-based classification of cancer subtypes. Biol Direct 7:21. doi:10.1186/1745-6150-7-21

    Article  PubMed Central  PubMed  Google Scholar 

  78. Pyatnitskiy M, Mazo I, Shkrob M et al (2014) Clustering gene expression regulators: new approach to disease subtyping. PLoS One. doi:10.1371/journal.pone.0084955

    Google Scholar 

  79. Chuang H-Y, Lee E, Liu Y-T et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140. doi:10.1038/msb4100180

    Article  PubMed Central  PubMed  Google Scholar 

  80. Gambardella G, Moretti M, de Cegli R et al (2013) Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics 29:1776–1785, doi: citeulike-article-id:12415017\rdoi: 10.1093/bioinformatics/btt290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Mitra K, Carvunis A-R, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719–732. doi:10.1038/nrg3552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol. doi:10.1038/msb.2011.99

    PubMed Central  PubMed  Google Scholar 

  83. Liu X, Liu Z-P, Zhao X-M, Chen L (2012) Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc 19:241–248. doi:10.1136/amiajnl-2011-000658

    Article  PubMed Central  PubMed  Google Scholar 

  84. Wang Y-C, Chen B-S (2011) A network-based biomarker approach for molecular investigation and diagnosis of lung cancer. BMC Med Genomics 4:2

    Article  PubMed Central  PubMed  Google Scholar 

  85. Zhang B, Li H, Riggins RB et al (2009) Differential dependency network analysis to identify condition-specific topological changes in biological networks. Bioinformatics 25:526–532. doi:10.1093/bioinformatics/btn660

    Article  PubMed Central  PubMed  Google Scholar 

  86. Tian Y, Zhang B, Hoffman EP et al (2014) Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks. BMC Syst Biol 8:87. doi:10.1186/s12918-014-0087-1

    Article  PubMed Central  PubMed  Google Scholar 

  87. Zhang B, Wang Y (2012) Learning structural changes of Gaussian graphical models in controlled experiments. Proceedings of the twenty-first conference on uncertainty in artificial intelligence

    Google Scholar 

  88. Heckerman D, Chickering DM, Meek C et al (2000) Dependency networks for inference, collaborative filtering, and data visualization. J Mach Learn Res 1:49–75. doi:10.1162/153244301753344614

    Google Scholar 

  89. Gámez J, Mateo J, Puerta J (2006) Dependency networks based classifiers: learning models by using independence tests. Proceedings of the 3rd European workshop on probabilistic graphical models. pp 115–122

    Google Scholar 

  90. Sun S-Y, Liu Z-P, Zeng T et al (2013) Spatio-temporal analysis of type 2 diabetes mellitus based on differential expression networks. Sci Rep 3:2268. doi:10.1038/srep02268

    PubMed Central  PubMed  Google Scholar 

  91. Islam MF, Hoque MM, Banik RS et al (2013) Comparative analysis of differential network modularity in tissue specific normal and cancer protein interaction networks. J Clin Bioinforma 3:19. doi:10.1186/2043-9113-3-19

    Article  PubMed Central  PubMed  Google Scholar 

  92. Taylor IW, Linding R, Warde-Farley D et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27:199–204. doi:10.1038/nbt.1522

    Article  CAS  PubMed  Google Scholar 

  93. Zhu Y, Shen X, Pan W (2009) Network-based support vector machine for classification of microarray samples. BMC Bioinformatics 10(Suppl 1):S21. doi:10.1186/1471-2105-10-S1-S21

    Article  PubMed Central  PubMed  Google Scholar 

  94. Johannes M, Brase JC, Fröhlich H et al (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics 26:2136–2144. doi:10.1093/bioinformatics/btq345

    Article  CAS  PubMed  Google Scholar 

  95. Stumpf MPH, Thorne T, de Silva E et al (2008) Estimating the size of the human interactome. Proc Natl Acad Sci U S A 105:6959–6964. doi:10.1073/pnas.0708078105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19:1720–1730

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117. doi:10.1186/gb-2003-4-9-117

    Article  PubMed Central  PubMed  Google Scholar 

  98. Meyer P, Alexopoulos LG, Bonk T et al (2011) Verification of systems biology research in the age of collaborative competition. Nat Biotechnol 29:811–815. doi:10.1038/nbt.1968

    Article  CAS  PubMed  Google Scholar 

  99. Jarchum I, Jones S (2015) DREAMing of benchmarks. Nat Biotechnol 33:49–50. doi:10.1038/nbt.3115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto de la Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Strunz, S., Wolkenhauer, O., de la Fuente, A. (2016). Network-Assisted Disease Classification and Biomarker Discovery. In: Schmitz, U., Wolkenhauer, O. (eds) Systems Medicine. Methods in Molecular Biology, vol 1386. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3283-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3283-2_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3282-5

  • Online ISBN: 978-1-4939-3283-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics